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ABSTRACT 

 

This day and age, a vast and array of equipments are electricity consuming devices, from our 

means of transport, pumps that enable water supply, cellular communication devices to 

lighting for our homes. Therefore, we require reliable and efficient power supply at 

reasonable cost. Generation is to be done while ensuring that production of energy is at its 

lowest cost in order to reliably serve consumers. In addition to ensuring reduced costs for 

both consumers and producers, power system operators are also responsible for ensuring that 

power supply match load demand and for keeping the system under safe operational limits, 

such as, ensuring that no single fault may cause the power system to fail. Hence security 

constrained Economic dispatch (SCED) problem is of prime relevance.  

SCED is an optimization process that takes account of these factors such as, the varying load 

demands, the varying cost of different types of generation units, and the unexpected 

conditions of the transmission network that affect which generation units can be used to serve 

load reliability. These factors are bared in mind while selecting the generation units to 

dispatch in order to deliver a reliable supply of the electrical power at the lowest cost possible 

under given conditions.  

SCED problem has been successfully performed with conventional methods such as linear 

programming [LP] & Quadratic programming, intelligent search methods such as particle 

swarm optimization and genetic algorithm. In this project, the improved out-of-kilter 

algorithm has been realized to solve the SCED problem. 

The realized IOKA algorithm has been implemented on the IEEE 30-bus network. The 

optimal real power output for a system total load demand of 283.4MW was found to be; Total 

Generation = 293.04 MW. The generation for each of the six generation units; PG1=178.347 

MW, PG2=49.01 MW, PG5=20.09 MW, PG8=21.99 MW, PG11=11.84 MW and PG13=10.92 

MW. The obtained real power losses; 9.64 MW and the total optimal generation cost obtained 

as 802.34 $/hr. The IOKA algorithm was able to achieve similar results in cost as those 

obtained from LP = 802.4 $/hr and OKA = 802.51 $/hr. The cost of SCED and classical ED 

was also compared for various load demands; SCED had higher costs of generation which 

was more pronounced in higher load demands. 
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CHAPTER 1  

INTRODUCTION 

1.1. DEFINITION OF TERMS 

1.1.1. Economic Load Dispatch 

 

ELD is the short term determination of the optimal output of a number of electricity 

generation facilities, to meet the system demand, at the lowest possible fuel cost, while 

serving power to the public in a robust but reliable manner [1]. 

Optimal efficiency in power generation reduces the cost per kilowatt hour passed to 

consumers from the power producers and also the cost of operation of the power companies 

despite the fluctuating prices of fuel, labour, supplies and maintenance. Economic dispatch 

deals with the problem of minimum cost of production of energy. It coordinates the 

production costs of all the power plants operating in the system. Variation of load demand in 

per hour and per day basis makes it paramount to perform coordination control of power 

plant outputs in order to keep the system as secure as possible [2]. 

1.1.2. System security 

 

A power system must be capable of withstanding the loss of some or several components e.g. 

transmission lines, transformers and generators while still staying in operation. Power system 

security is the ability to maintain the flow of electricity from the generators to the consumers, 

especially under disturbed conditions. Since the disturbance can be small or widespread, the 

security criteria should be able to ensure sufficient security margins. The measure of power 

system security is amount, duration and frequency of power outages from consumers. The 

need for power system security led to interconnection of power generation units to form a 

large transmission network that could provide alternate paths in case of transmission outages 

on the power grid. This leads to the disadvantage of rare disturbance affecting a large 

geographical area as was apparent in the widespread power blackout in the USA in 2003. 

However, an overlay of computers and communications on the power networks has enabled 

more secure operations and control [3] [4]. 
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Therefore there are various engineering tools that are used in the energy control centre to 

perform system monitoring, contingency analysis, preventive analysis and corrective 

analysis. 

1.1.3. Security constraints 

1.1.3.1 Equality constraints 

 

 The equality constraint g(x) of the ELD problem is represented by the power balance 

constraint, where the total power generation must cover the total power demand and the 

power loss. This implies solving the load flow problem, which has equality constraints on an 

active and reactive power at each bus as follows [3]: 

𝑃𝑖 = 𝑃𝑔𝑖 −  𝑃𝑑𝑖 =   [𝑉𝑗𝑉𝑖[𝐺𝑖𝑗 cos θij +𝐵𝑖𝑗 sin  θ𝑖𝑗
𝑁
𝑗=1 ]]     (1) 

   

𝑄𝑖 = 𝑄𝑔𝑖 −  𝑄𝑑𝑖 =   [𝑉𝑗𝑉𝑖[𝐺𝑖𝑗 sin θij +𝐵𝑖𝑗 𝑐𝑜𝑠𝜃𝑖𝑗
𝑁
𝑗=1 ]]  

Where: 𝑖 = 1,2, . . . ,𝑛 and 𝜃𝑖𝑗 =  𝜃𝑖 −  𝜃𝑗; 𝑃𝑖,𝑄𝑖: injected active and reactive power at bus I; 

𝑃𝑑𝑖,𝑄𝑑𝑖: active and reactive power demand at bus i; 𝑉𝑖,𝜃𝑖: bus voltage magnitude and angle 

at bus i; 𝐺𝑖𝑗,𝐵𝑖𝑗: conductance and susceptance of the (i,j) element in the admittance matrix. 

1.1.3.2. Inequality constraints  

The inequality constraints h(x) reflect the limits on physical devices in the power system as 

well as the limits created to ensure system security: 

a) Upper and lower bounds on the active and reactive generations 

 Pgi−min  ≤  Pgi  ≤ Pgi−max  for i = 1,… , N       (2) 

 Qgi−min  ≤  Qgi  ≤ Qgi−max  for i = 1,… , N       (3) 

  

b) Upper and lower bounds on the tap ratio (t) and phase shifting (α) of variable 

transformers:  

tijmin  ≤  tij  ≤ tijm ax      for i = 1,… , N       (4) 

 αijmin  ≤  αij  ≤ αijmax      for i = 1,… , N       (5) 
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c) Upper limit on the active power flow (Pij) of line i-j: 

  𝑃𝑖𝑗  ≤ 𝑃𝑖𝑗𝑚𝑎𝑥          (6) 

Where [55]:  

 𝑃𝑖𝑗  =  |  − 𝐺𝑖𝑗𝑉𝑖
2  +  𝐺𝑖𝑗𝑉𝑖𝑉𝑗𝑐𝑜𝑠( 𝜃𝑖  –  𝜃𝑗 )  +  𝐵𝑖𝑗𝑉𝑖𝑉𝑗𝑠𝑖𝑛( 𝜃𝑖  –  𝜃𝑗 ) |  (7) 

d) Upper and lower bounds on the bus voltage magnitude:  

 𝑉𝑖 𝑚𝑖𝑛  ≤   𝑉𝑖  ≤  𝑉𝑖 𝑚𝑎𝑥          (8) 

1.1.4. Security Constrained Economic Dispatch 

 

Security constrained Economic dispatch is the operation of generation facilities to produce 

energy at the lowest cost to reliably serve consumers, recognizing any operational limits of 

generation and transmission facilities [4]. This definition describes the basic way utilities 

dispatch their own and purchased resources to meet electrical load. 

The various challenges faced in supplying electricity include,  

a) The production must be simultaneous with demand, and demand varies greatly 

over cause of day, weak and season. 

b)  The cost of different types of generating units varies greatly.  

c) Expected and unexpected conditions on the transmission network also affect 

which generating units can be used to serve the load reliability. 

 These factors are bared in mind while selecting the generating units to be dispatched in order 

to deliver reliable supply of power. This is done while keeping within the stipulated 

constraints (equality and inequality constraints) of the generation units and transmission 

facilities. 
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1.2. SURVEY OF EARLIER WORKS 

 

There are three groups of method classification that have been used to solve the various 

optimization problems. 

o Conventional methods 

o Intelligence search methods 

o Hybrid methods  

1.2.1. CONVENTIONAL METHODS 

1.2.1.1. GENETIC ALGORITHM (GA) 

 

Genetic Algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas 

of natural selection and genetics as observed in natural systems and populations of living 

beings. In nature, each species is confronted by a challenging environment and should adapt 

itself for the maximum likelihood of survival. As time proceeds, the species with improved 

characteristics survives. In fact, the so called fittest type is survived [4]. This type of 

phenomenon which happens in nature is the basis of the stochastic search technique of the 

GA. Hence, it differs from many other approaches in that it acts on a population of solutions 

applying competition and selection tools. Genetic algorithms can be seen as procedures that 

mimic a simplistic mechanism of biological evolution [5]. 

GA provides a solution to a problem by working with a population of individuals each 

representing a possible solution. Each possible solution is termed a chromosome [3]. The 

objective function is calculated for this chromosome as the problem fitness function. After 

setting an initial population, selecting a chromosome and calculating its fitness, a next 

population is generated. Initial chromosomes are called parents and the regenerated 

chromosomes are called offspring. The regeneration results in chromosomes with better 

fitness values. The algorithm proceeds until no further improvement is achieved in the fitness 

function. There are multiple ways to encode elements of solutions including binary, value, 

and tree encodings. Selection, crossover and mutation are the three main GA operators and 

are described next [6]. 

• Selection. Based on the chromosome structure defined, a population of chromosomes is 

initially generated, either, randomly or intelligently. 30–100 chromosomes may be 
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considered. Then, we may select two chromosomes as parents for further process. The fitness 

value is used as the criterion for parent’s selection. 

• Crossover. Crossover combines elements of solutions in the current generation to create a 

member of the next generation. Once parents are selected, we should generate new strings; 

offspring, through two types of operators. The so called crossover works on the principle of 

interchanging the values after a specific position. This type of regeneration is done randomly 

at various positions. As a result, a new population of chromosomes is generated in which, 

again, the selection process may be restarted. 

• Mutation. Mutation systematically changes elements of a solution from the current 

generation in order to create a member of the next generation. An inherent drawback of the 

crossover operator is the fact that at some particular position, the value of the gene may not 

change at all. To avoid this problem, the mutation operator tries to alter the value of a gene, 

randomly from 1 to 0 and vice versa. We should mention, however, that this is done quite 

infrequently. 

Crossover and mutation accomplish exploration of the search space by creating diversity in 

the members of the next generation. 

Their advantage lies in the ease of coding them and their inherent parallelism. The use of 

genotypes instead of phenotypes to travel in the search space makes them less likely to get 

stuck in local minima. The GA only needs to evaluate the objective function (fitness) to guide 

its search. There is no requirement for derivatives or other auxiliary knowledge. Hence, there 

is no need for computation of derivatives or other auxiliary functions [7]. 

There are, however, certain drawbacks to them. Genetic algorithms require very intensive 

computation time and hence they are slow. Genetic algorithms also suffer from deception. 

The term deception describes problems that are misleading for genetic algorithms (GAs). 

Well-known examples of GA-deceptive problems are n-bit trap functions. These functions 

are characterized by (I) fix-points that correspond to sub-optimal solutions and that have 

large basins of attraction, and (ii) fix-points with relatively small basins of attraction that 

correspond to optimal solutions. Therefore, for these problems a GA will—in most cases—

not find an optimal solution [8]. Also, finding an appropriate crossover operator turns out to 

be a difficult task, while using some ―general purpose‖ crossover operators often leads to 

poor performance. Another problem is the existence of genetic drift, that is, a loss of 

population diversity due to the finite population size, and, as a result, a premature 

convergence to sub-optimal solutions [9]. 
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1.2.1.2. LINEAR PROGRAMMING (LP) 

 

If the objective and constraint functions are linear and the variables are constrained to be 

positive, their solution can be readily achieved by using LP [10]. Nonlinear power system 

optimization problems may also be linearized, so that objective function and constraints of 

power system optimization have linear forms and solved by linear programming (LP). The 

general optimization problem assumes the form 

 

Minimize 𝑓(𝒙)  =  𝑛𝑖 = 1 𝛼𝑖𝑥𝑖  

 

Subject to:  𝑎𝑗 (𝒙)  =  𝑛𝑖  = 1        𝛽 𝑖𝑗𝑥𝑖  −  𝜇𝑗  =  0 𝑓𝑜𝑟 𝑗 =  1, 2. . .𝑃 

𝐶𝑗 (𝒙)  =  𝑛𝑖  = 1        𝛾 𝑖𝑗 𝑥𝑖  −  𝑣𝑗  ≥  0 𝑓𝑜𝑟 𝑗 =  1, 2. . . 𝑞 𝑥𝑖 ≥  0 𝑓𝑜𝑟 𝑖 =

 1, 2. . .𝑛  

 

Where𝛼𝑖 , 𝛽 𝑖𝑗 ,𝛾 𝑖𝑗 , 𝜇𝑗  and 𝑣𝑗  are constants [11]. For example, 

 

Minimize f(x) = −2x1 + 4x2 + 7x3 + x4 + 5x5 

 

Subject to:  𝑎1(𝒙)  =  −𝑥1 +  𝑥2 +  2𝑥3 +  𝑥4 +  2𝑥5 −  7 =  0  

𝑎2(𝒙)  =  −𝑥1 +  2𝑥2 +  3𝑥3 +  𝑥4 +  𝑥5 −  6 =  0  

𝑎3(𝒙)  =  −𝑥1 +  𝑥2 +  𝑥3 +  2𝑥4 +  𝑥5 −  4 =  0  

 

𝑥𝑖 ≥  0 𝑓𝑜𝑟 𝑖 =  1, 2. . . 5  

  

The LP approach has several advantages. First, it is reliable, especially regarding 

convergence properties. Second, it can quickly identify infeasibility. Third, it accommodates 

a large variety of power system operating limits, including the very important contingency 

constraints. The disadvantages of LP - based techniques are inaccurate evaluation of system 

losses and insufficient ability to find an exact solution compared with an accurate nonlinear 

power system model [3]. 
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1.2.1.3. NONLINEAR PROGRAMMING (NLP) 

 

The nonlinear programming optimization algorithm deals with problems involving nonlinear 

objective and constraint functions. Power system operation problems are nonlinear in nature.  

To solve a nonlinear programming problem, the first step in this method is to choose a search 

direction in the iterative procedure, which is determined by the first partial derivatives of the 

equations (the reduced gradient). Therefore, these methods are referred to as first - order 

methods, such as the generalized reduced gradient (GRG) method. 

A nonlinear optimization problem assumes the form: 

 

Minimize 𝑓 =  𝑓(𝒙) 

Subject to: 𝒙 ∈   𝑅 

Where f(x) is a real-valued function and 𝑅 ⊂   𝐸𝑛 is the feasible region. 

There are numerous algorithms that can be used for the solution of nonlinear programming 

problems ranging from some simple to some highly complex algorithms.  

The two most fundamental common properties of nonlinear programming algorithms are 

1. They are iterative algorithms. 

2. They are descent algorithms. 

An algorithm is iterative if the solution is obtained by calculating a series of points in 

sequence, starting with an initial estimate of the solution. On the other hand, an algorithm is a 

descent algorithm if each new point generated by the algorithm yields a reduced value of 

some function, possibly the objective function [10]. 

NLP - based methods have higher accuracy than LP - based approaches, and also have global 

convergence, which means that the convergence can be guaranteed independent of the 

starting point, but a slow convergent rate may occur because of zigzagging in the search 

direction [3]. Generally, nonlinear programming based procedures have many drawbacks 

such as insecure convergence properties and algorithmic complexity [7]. 

1.2.1.4. QUADRATIC PROGRAMMING (QP) 

 

The quadratic programming technique is a special form of nonlinear programming whose 

objective function is quadratic with linear constraints. If the optimization problem assumes 

the form 
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Minimize 𝑓(𝒙)  =  𝛼0 +  𝜸𝑇 𝒙 +  𝒙𝑇𝑸 𝒙 

 

Subject to: 𝜶𝑇 𝒙 ≥  𝜷 

 

 

Where  

𝜶 =  
𝛼11 ⋯ 𝛼1𝑞
⋮ ⋱ ⋮

𝛼𝑛1 ⋯ 𝛼𝑛𝑞
  

 

𝜷𝑇 =  [𝛽1 𝛽2 · · ·  𝛽𝑞 ]   

𝜸𝑇 =  [𝛾1 𝛾2 . . . 𝛾𝑛 ]  

 

Q is a positive definite or semi definite symmetric square matrix, and the constraints are 

linear and the objective function quadratic. Such an optimization problem is said to be a 

quadratic programming (QP) problem [10]. A typical example of this type of problem is as 

follows: 

 

Minimize f(x) = 
1

2
𝑥1

2 +
1

2
𝑥2

2 + 𝑥1 + 2𝑥2 

 

Subject to:  𝑐1(𝒙)  =  6 −  2𝑥1 −  3𝑥2 ≥  0 

𝑐2(𝒙)  =  5 −  𝑥1 −  4𝑥2 ≥  0  

𝑐3(𝒙)  =  𝑥1 ≥  0  

𝑐4(𝒙)  =  𝑥2 ≥  0  

Quadratic programming has higher accuracy than LP – based approaches. Especially, the 

most often - used objective function in power system optimization is the generator cost 

function, which generally is a quadratic. Thus there is no simplification for such objective 

function for a power system optimization problem solved by QP [3]. Quadratic programming 

based techniques have some disadvantages associated with the piecewise quadratic cost 

approximation [7]. 
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1.2.1.5. NEWTON METHOD  

 

The Newton method is a second-order method as it requires the computation of the second - 

order partial derivatives of the power flow equations and other constraints. The necessary 

conditions of optimality commonly referred to as the Kuhn–Tucker conditions are obtained 

[3]. Newton-based techniques have a drawback of convergence characteristics that are 

sensitive to the initial conditions and they may even fail to converge due to the inappropriate 

initial conditions [7]. The convergence property is slow, away from the solution, and fast, 

close to the solution. The main disadvantage of the Newton method is that the second 

derivatives of the function is required, these exact formulas may be unavailable or difficult to 

obtain [12]. However, Newton’s method is favoured for its quadratic convergence properties 

[3]. 

1.2.1.6. NETWORK FLOW PROGRAMMING (NFP) 

 

Network flow programming (NFP) is special linear programming. The early applications of 

NFP were mainly on a linear model. Recently, nonlinear convex network flow programming 

has been used in power systems’ optimization problems [3]. 

The general network flow problem can be illustrated by considering figure 1.1. We have a 

number of sources of material and a number of sinks (or demand points) for material. 

Normally, we have each source having an upper bound on the amount of material it can 

supply and each demand point having an accompanying number indicating the amount of 

material it needs. 

 

Figure 1.1: Example of a Network 
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Between the sources and the sinks are intermediate nodes through which material can be 

shipped (flows) to other intermediate nodes or to the sinks. There are also arcs (essentially 

directed from the sources to the sinks), which have associated with each of the arc 1) an 

upper limit (or capacity) on the amount of material which can flow down the arc; and 2) 

a cost per unit of material sent down the arc. 

Therefore, the problem, termed the minimum cost network flow problem, is one of deciding 

how to supply the sinks from the sources at minimum cost. Ford and Fulkerson developed an 

algorithm called the out-of-kilter algorithm for this problem in the early 1960's and this 

original algorithm has been revised and improved since then.   

NFP - based algorithms have the features of fast speed and simple calculation. However, in 

solving such problems it is the number of arcs which (essentially) determines the solution 

time. These methods are efficient for solving simplified OPF problems such as security - 

constrained economic dispatch. This method is reviewed in details in chapter 2 of this project. 

1.2.2. INTELLIGENCE SEARCH METHODS 

 

These algorithms are Metaheuristics and are often inspired by natural processes. Artificial 

Intelligence techniques, unlike strict mathematical methods, have the apparent ability to adapt 

to nonlinearities and discontinuities commonly found in power systems [7]. Developing 

solutions with these tools offers two major advantages [13]: 

1. Development time is much shorter than when using more traditional approaches. 

2. The systems are very robust, being relatively insensitive to noisy and/or missing data.  

They include The Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), 

Simulated Annealing, Evolutionary Computation and Tabu Search (TS) methods. 

 

1.2.2.1. ANT COLONY OPTIMIZATION 

 

Ant algorithms were inspired by the observation of real ant colonies hence most of the ideas 

of ACO stem from real ants. In particular, the use of: (a) a colony of cooperating individuals - 

ant algorithms are composed of a population, or colony, that cooperate to find a good 

―solution‖ to the task under consideration, (b) an (artificial) pheromone trail for local 

stigmergetic communication - While real ants deposit on the world’s state they visit a 



11 

 

chemical substance, the pheromone, artificial ants change some numeric information locally 

stored in the problem’s state they visit. This information takes into account the ant’s current 

history or performance and can be read or written by any ant accessing the state, (c) a 

sequence of local moves to find shortest paths - Artificial and real ants share a common task: 

to find a shortest (minimum cost) path joining an origin (nest) to destination (food) sites, and 

(d) a stochastic decision policy using local information and no look ahead -  The policy is a 

function of both the a priori information represented by the problem specifications 

(equivalent to the terrain’s structure for real ants), and of the local modifications in the 

environment (pheromone trails) induced by past ants. 

While walking from food sources to the nest and vice versa, ants deposit on the ground a 

substance called pheromone, forming in this way a pheromone trail. Ants can smell 

pheromone, and when choosing their way, they tend to choose, in probability, paths marked 

by strong pheromone concentrations. The pheromone trail allows the ants to find their way 

back to the food source (or to the nest). Also, it can be used by other ants to find the location 

of the food sources found by their nest mates. This pheromone trail following behaviour can 

give rise, once employed by a colony of ants, to the emergence of shortest paths. That is, 

when more paths are available from the nest to a food source, a colony of ants may be able to 

exploit the pheromone trails left by the individual ants to discover the shortest path from the 

nest to the food source and back [14]. 

It is clear that what is going on in the above-described process is a kind of distributed 

optimization mechanism to which each single ant gives only a very small contribution. 

Though a single ant is in principle capable of building a solution (i.e., of finding a path 

between nest and food reservoir), it is only the ensemble of ants, that is, the ant colony, that 

presents the ―shortest path-finding‖ behaviour. 

Correspondingly, artificial ants simulate pheromone laying by modifying appropriate 

―pheromone variables‖ associated with problem states they visit while building solutions to 

the optimization problem to which they have been applied. 

It has the disadvantage of premature convergence (stagnation), that is, the situation in which 

some not very good individual takes over the population just because of a local optimum 

impeding further exploration of the search space. Pheromone trail evaporation and stochastic 

state transitions are the needed complements to alienate such drawbacks. Pheromone 

evaporation allows the ant colony slowly to forget its past history so that it can direct its 

search toward new directions without being over-constrained by past decisions [15]. Making 

pheromone update a function of the generated solution quality helps in directing future ants 
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more strongly toward better solutions [16]. Another disadvantage is its convergence speed is 

slow because of poor performance on the early path. An advantage of the ACO is its ability 

of parallel processing and global searching. 

 

1.2.2.2. PARTICLE SWARM OPTIMIZATION 

 

It is a stochastic search technique that has been developed based on behaviour of social 

animals which live and move in groups such as fish and birds. Birds and fish usually move in 

groups at a certain speed and position. Their design of movement is dependent on their 

experience as well as experience of others in the group [17].  

The PSO algorithm exploits a population of individuals to probe promising regions of search 

space. The population is called a swarm and the individuals are called particles or agents. 

Traditionally, PSO has no crossover between individuals and has no mutation, and particles 

are never substituted by other individuals during the run. Instead, the PSO refines its search 

by attracting the particles to positions with good solutions. Each particle remembers its own 

best position found so far in the exploration. This position is called the personal best. 

Additionally, among these personal best, there is only one particle that has the best fitness, 

called the global best. Each particle moves with an adaptable velocity within the regions of 

decision space and retains a memory of the best position it ever encountered. The best 

position ever attained by each particle of the swarm is communicated to all other particles. 

The conventional PSO assumes an n - dimensional search space, where n is the number of 

decision variables in the optimization problem, and a swarm consisting of N particles. In 

PSO, a number of particles form a swarm that evolves or flies throughout the problem 

hyperspace to search for optimal or near - optimal solution. The coordinates of each particle 

represent a possible solution with two vectors associated with it, the position X and velocity V 

vectors. During their search, particles interact with each others in a certain way to optimize 

their search experience [3]. 

It has the advantage of a superior convergence time hence is fast in solving complex 

problems effectively. [9]PSO can be applied to non linear and non-continuous optimization 

problems with continuous variables [17]. It has the flexibility to adapt and enhance both 

global and local exploration abilities. Therefore, when solving problems with several local 

optimal solutions, there is high possibility that PSO will explore more local optimal solutions 

with the potential of global optimal solution after convergence [3].  It is a stochastic search 
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technique with reduced memory requirement, computationally effective and easier to 

implement than other artificial intelligence techniques as it is easily programmed and 

modified with basic mathematical and logic operations. It requires less parameter tuning [3]. 

 

1.2.2.3. TABU SEARCH 

 

 Tabu Search is an iterative search algorithm, characterized by the use of a flexible memory. 

Tabu means forbidden to search or to consider. Unlike other combinatorial approaches which 

are developed by physical phenomena, TS is not related to physical phenomena. It is inspired 

by the clever management of memory structures. The main component of this algorithm is 

memory structures, in order to have a trace of evolution of the search, and strategy for using 

the memory information in the best possible way [4]. 

The fundamental memory structure is a so called Tabu list, which stores attributes 

characterizing solutions that should not be considered again for a certain length of time. 

Usually a first-in-first-out (FIFO) strategy is applied to the list. Old attributes are deleted as 

new attributes are inserted. The neighbourhood, from which the next solution/move is to be 

selected, is modified by classifying some moves as tabu, others as desirable. For a complete 

iteration, a neighbourhood structure is defined and a move is then made to the best 

configuration. To escape from local optimum points, some transitions to the configurations 

with higher costs are also allowed. Two extra parameters are often used: aspiration and 

diversification. Aspiration is used when all the neighbouring states of the current state are 

also included in the tabu list [18]. In that case, the tabu obstacle is overridden by selecting a 

new state. . Most commonly, the aspiration criterion drops the tabu status of moves leading to 

a better solution than the best solution visited so far. Diversification adds randomness to this 

otherwise deterministic search. If the tabu search does not converge, the search is reset 

randomly [7]. These help avoiding trapping in local optimum points. Intensification strategies 

are also used, intensification strategies are intended to explore more carefully promising 

regions of the search space either by recovering elite solutions (i.e., the best solutions 

obtained so far) or attributes of these solutions [19]. 

The steps involved in a TS optimization algorithm may be summarized as (a) Generate an 

initial solution, (b) Select move, (c) Update the solution. The next solution is chosen from the 

list of neighbours which is either considered as desired (aspirant) or not tabu and for which 
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the objective function is optimum. The process is repeated based on any stopping rule 

proposed [4]. 

Tabu search has the advantage of not using hill-climbing strategies. Its performance can also 

be enhanced by branch-and-bound techniques. However, a solution space must be generated. 

Hence, tabu search requires knowledge of the entire operation at a more detailed level [11, 

12]. 

1.2.2.4. EVOLUTIONARY ALGORITHMS (EA) 

 

Evolutionary computation has become a standard term to indicate problem-solving 

techniques which use design principles inspired from models of the natural evolution of 

species. There are three main algorithmic developments in Evolutionary computation: 

evolution strategies, evolutionary programming, genetic programming and genetic 

algorithms. All employ a population-based algorithm that use operators inspired by 

population genetics to explore the search space, these genetic operators include reproduction, 

mutation, and recombination or crossover operator. The population of individuals each 

represents a solution to the problem under consideration. 

The reproduction operator refers to the process of selecting the individuals that will survive 

and be part of the next generation. This operator typically uses a bias toward good-quality 

individuals. The better the objective function value of an individual, the higher the 

probability that the individual will be selected and therefore be made part of the next 

generation. The recombination operator combines parts of two or more individuals and 

generates new individuals, also called offspring. The mutation operator is a unary operator 

that introduces random modifications to one individual [19]. These algorithms simulate the 

principle of evolution (a two-step process of variation and selection), and maintain a 

population of potential solutions (individuals) through repeated application of these 

evolutionary operators of reproduction mutation and crossover. They yield individuals with 

successively improved fitness, and converge; it is hoped, to the fittest individuals 

representing the optimum solutions. 

It has the advantage of converging to the global optimum solution. Evolutionary algorithms 

are robust and powerful global optimization techniques for solving large-scale problems that 

have many local optima [7]. 

Disadvantages 
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 Since EAs require all information to be included in the fitness function, it is very difficult to 

consider all OPF constraints. It is therefore used to solve simplified OPF problems such as 

the classic economic dispatch and security - constrained economic power dispatch [3]. They 

require high CPU times, and they are very poor in terms of convergence performance. 

1.2.2.5. SIMULATED ANNEALING (SA) 

Simulated annealing is a stochastic search method inspired by an analogy between the 

physical annealing of solids (crystals) and combinatorial optimization problems. By making 

an analogy between the annealing process (which is the natural process of cooling a molten 

material; from a high temperature [4]) and the optimization problem, a large class of 

combinatorial optimization problems can be solved following the same procedure of 

transition from an equilibrium state to another, reaching the minimum energy level of the 

system. This analogy can be set as follows [7]. 

 Solutions in the combinatorial optimization problem are equivalent to states 

(configurations) of the physical system. 

 The cost of a solution is equivalent to the energy of a state. 

 A control parameter is introduced to play the role of the temperature in the annealing 

process. 

The process involves first melting a solid and then cooling it very slowly, letting it spend a 

long time at low temperatures, to obtain a perfect lattice structure corresponding to a 

minimum energy state. At each step the temperature is maintained constant for a period of 

time sufficient for the solid to reach thermal equilibrium. At equilibrium, the solid could have 

many configurations, each corresponding to different spins of the electrons and to a specific 

energy level. At equilibrium the probability of a given configuration is given by the Boltzman 

distribution. SA transfers this process to local search algorithms for combinatorial 

optimization problems. It does so by associating the set of solutions of the problem attacked 

with the states of the physical system, the objective function with the physical energy of the 

solid, and the optimal solutions with the minimum energy states [4]. In simulated annealing 

[20], (a) an acceptance criterion is defined and only those randomly generated moves that 

satisfy the criteria are executed, and (b) the search is usually performed in the space of the 

solutions. 

The salient features of the SA method may be summarized as follows:- It could find a high-

quality solution that does not strongly depend on the choice of the initial solution, it does not 

need a complicated mathematical model of the problem under study, it can start with any 
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given solution and try to improve it (This feature could be utilized to improve a solution 

obtained from other suboptimal or heuristic methods), it has been theoretically proved to 

converge to the optimum solution and  it does not need large computer memory [7]. 

However, it has its disadvantages too. Like GAs it is very slow; its efficiency is dependent on 

the nature of the surface it is trying to optimize and it must be adapted to specific problems. 

The availability of supercomputing resources, however, mitigates these drawbacks and makes 

simulated annealing a good candidate [7]. 

 

1.2.2.6. NEURAL NETWORK 

 

Optimization neural network (ONN) changes the solution of an optimization problem into an 

equilibrium point (or equilibrium state) of nonlinear dynamic system, and changes the 

optimal criterion into energy functions for dynamic systems. Because of its parallel 

computational structure and the evolution of dynamics, the ONN approach appears superior 

to traditional optimization methods [3].  

1.2.3. HYBRID METHODS 

 

These are a combination of two or more methods.  A big challenge in developing global 

optimization approaches is to compromise the contradictory requirements, including 

accuracy, robustness and computation time. It is difficult to meet all these requirements by 

concentrating on a sole meta-heuristic. In recent years, there has been an up-growing interest 

in hybridization of different meta-heuristics to provide more efficient algorithms [21]. 

 Examples include:-  

a) ACO and GA - combines Genetic Algorithm and Ant colony algorithms. Genetic 

Algorithm is added to Ant Colony Algorithm’s every generation in the proposed 

algorithm. Making use of Genetic Algorithm’s advantage of whole quick 

convergence, Ant Colony Algorithm’s convergence speed is quickened. Genetic 

Algorithm’s mutation mechanism improves the ability of Ant Colony Algorithm to 

avoid being trapped in a local optimal [16].  

b) ACO and TS – combines Tabu Search and Ant Colony algorithms. The new algorithm 

incorporates the concepts of promising list, tabu list and tabu balls from TS into the 

framework of ACO. This enables the resultant algorithm to avoid bad regions and to 

be guided toward the areas more likely to contain the global minimum. New strategies 
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are proposed to dynamically tune the radius of the tabu balls during the execution and 

also to handle the variable correlations. The promising list is also used to update the 

pheromone distribution over the search space. The parameters of the new method are 

tuned based on the results obtained for a set of standard test functions [21]. 

c) SA and TS – combines Simulated Annealing and Tabu Search algorithms. The 

proposed algorithm may be described as an SA algorithm with the TS algorithm used 

as a filter to reject the repeated trial solutions from being tested by the SA algorithm. 

The TS method is implemented as a pre-processor step in the SA algorithm to test a 

set of neighbours to the current solution. The trial solution that satisfies the tabu test is 

accepted. This accepted trial solution is then accepted or rejected according to the SA 

test. The main idea in the proposed algorithm is to use the TS algorithm to prevent the 

repeated solutions from being accepted by the SA. This saves time and improves the 

quality of the obtained solution [7]. 

d) GA, SA and TS – based on integrating the Genetic Algorithm, Simulated Annealing, 

and Tabu Search methods. The core of the proposed algorithm is based on the GA. 

The TS is used to generate new population members in the reproduction phase of the 

GA. Moreover, the SA method is adopted to improve the convergence of the GA by 

testing the population members of the GA after each generation. The SA test allows 

the acceptance of any solution at the beginning of the search, and only good solutions 

will have a higher probability of acceptance as the generation number increases. The 

effect of using the SA is to accelerate the convergence of the GA and also increase the 

fine-tuning capability of the GA when approaching a local minimum [22]. 

1.2.4. SUMMARY 

 

We have introduced various methods of solving the SCED problem, this includes, 

conventional methods (which are mathematical methods), intelligence search methods (which 

are built around some basic principles taken from the observation of a particular natural 

phenomenon) and hybrid methods (which are a merger of two or more methods), and we 

have given an overview of some of the algorithms.  

Solving the problem by different techniques we should arrive at the same conclusion. The 

difference of the approaches can be characterized by the time spent for the photo typing, the 

speed of convergence and ability to handle e.g. power loss reduction [23]. 
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1.3. PROBLEM STATEMENT 

 

To develop an improved out-of-kilter algorithm using MATLAB that could be used to realize 

the solution of the economic load dispatch (ELD) problem with security constraints of power 

systems. 

1.3.1. OBJECTIVES 

 

 To attain an optimal solution to the security constrained economic dispatch. 

 To understand the improved out-of-kilter algorithm for formulation of SCED 

problem. 

 To develop an IOKA algorithm to be used for simulating the SCED problem. 

 To compare the results with those obtained from OKA for the 30 bus IEEE test 

Network.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. LITERATURE REVIEW ON SECURITY CONSTRAINED ECONOMIC 

DISPATCH 

2.1.1. SYSTEM SECURITY 

 

Everything seems to have a propensity to fail. Power systems are no exception. Power system 

security practices try to control and operate power systems in a defensive posture so that the 

effects of these inevitable failures are minimized. Power system security is therefore the 

ability to maintain the flow of electricity from the generators to the consumers, especially 

under disturbed conditions [2]. 

Definition of states of power system operations:- 

A normal state is the ideal operation condition wherein all the equipment are operating within 

their design limits and the demanded load is being met. Also, the power system can withstand 

a contingency without violation of any of the constraints. This means that the power system 

has reserve capacity (generation and transmission) available in this state. If this reserve 

capacity is reduced, or the possibility of major multiple contingencies increases due to 

adverse weather, then the system is said to be in the alert (insecure state). Although 

equipments are within their limits and load demand is met, the system is ―weaker‖ and may 

not be able to withstand a contingency. Preventive control actions are required to get the 

system back to normal state. 

If preventive control actions do not succeed, a power system remains insecure (in the alert 

state). If a contingency occurs, the system may go into the emergency state where 

overloading of equipment (above the short term ratings of equipment) occurs. The system can 

still be intact and can be brought back to the alert state by emergency control actions like 

fault tripping, generator tripping, load tripping, and HVDC power control. If these measures 

do not work, integrated system operation becomes unavailable and a major part of the system 

may be shut down due to equipment outages. This is in the extreme state. Load shedding and 

graceful or controlled system separation or islanding is necessary to prevent spreading of 

disturbances and a total grid failure. 
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If there is a widespread potential blackout, the surviving or restarted generators are connected 

to local loads, the restarted/surviving small power systems, the islands, are reconnected to 

correct the power system to alert or normal state. This is the corrective control. 

Preventive and corrective actions are directed by a system operator as they involve manual 

control actions while the emergency control actions are done by protective relays or fast 

acting controls [24]. 

The three main functions of system security that are carried out in an energy control centre 

include:- 

a) System monitoring  

System monitoring supplies the power system operators or dispatchers with important real 

time data on the conditions of the power system on as load and generation change. Telemetry 

systems measure, monitor and transmit the data, voltages, currents, current flows and the 

status of circuit breakers and switches in every substation in a transmission network. Further, 

other critical and important information such as frequency, generator outputs and transformer 

tap positions can also be telemetered. Digital computers in a control centre then process the 

telemetered data and place them in a database form and inform the operators in case of an 

overload or out of limit voltage Alarms can be set and emails notification sent out if your 

system functions outside the normal constraints thus avoiding possible interruptions. 

Important data are also displayed on large size monitors. These days it also enables energy 

cost monitoring and accounting and real time load forecasting and trending. 

b) contingency analysis 

Contingency analysis is used to calculate violations e.g. in case of an unplanned outage and 

give information on remedial actions to remove the violations. It’s a ―what if‖ scenario 

simulator that evaluates, provides and prioritizes the impacts on electric power systems when 

problems occur. Contingency is the loss of a small part of the power system e.g. a 

transmission line [25]. 

c) preventive analysis 

Corrective action analysis permits the operator to change the operation of the power system if 

a contingency analysis program predicts a serious problem in the event of the occurrence of a 

certain outage. A simple example of corrective action is the shifting of generation from one 
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station to another. This may result in change in power flows and causing a change in loading 

on overloaded lines. 

These three functions together consist of a very complex set of tools that help in the secure 

operation of a power system. These are done by energy management systems (EMS) and 

SCADA systems. The major function of the Energy management system (EMS) is to operate 

the system at minimum cost, with the guaranteed alleviation of emergency conditions. The 

emergency condition will depend on the severity of violations of operating limits (branch 

flows and bus voltage limits).The most severe violations result from contingencies. The 

power system should hence be able to withstand the effects of contingencies [2]. 

When preparing to deal with possible contingencies, operators consider:- 

a) preventive actions  

b) corrective actions 

Preventive actions refer to the day-ahead adjustments of generation and transmission flows. 

Preventive actions are designed to put the system in a state such that the occurrence of a 

credible disturbance does not cause it to become unstable. These include regulation actions 

and load-following actions.  

The regulation service is designed to handle rapid fluctuations in loads and small unintended 

changes in generation. This service helps maintain the frequency of the system at or close to 

its nominal value and reduce inadvertent interchanges with other power systems. Generating 

units that can increase or decrease their output quickly will typically provide this service. 

These units must be connected to the grid and must be equipped with a governor. They will 

usually be operating under automatic generation control. Generating units providing the load-

following service handle the slower fluctuations. These units obviously must be connected to 

the system and should have the ability to respond to these changes in load. By keeping the 

imbalance close to zero and the frequency close to its nominal value, these services are used 

as preventive security measures.  

Corrective actions refer to the dispatch of generating units and adjustments of transmission 

flow controls for mitigating transmission flow violations in real time. Corrective actions are 

intended to limit the consequences of a disturbance and are taken only if this disturbance 

occurs. This encompasses reserve services, which are designed to handle the large and 

unpredictable power deficits that could threaten the stability of the system.  

Reserve services are usually classified into two categories. Units that provide spinning 

reserve must start responding immediately to a change in frequency, and the full amount of 
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reserve capacity that they are supposed to contribute must be available very quickly. On the 

other hand, generating units providing supplemental reserve services do not have to start 

responding immediately.  

As long as the production is equal to the consumption, the frequency and the interchanges 

remain constant. However, the balance between load and generation is constantly perturbed 

by fluctuations in the load, by imprecise control of the output of generators and occasionally 

by the sudden outage of a generating unit or of an interconnection. Large frequency 

deviations can lead to a system collapse. If the frequency drops too low, protection devices 

disconnect the generating units from the rest of the system to protect them from damage. 

Such disconnections exacerbate the imbalance between generation and load, causing a further 

drop in frequency and additional disconnections. The system operator must therefore take 

preventive measures to ensure that it can start applying the corrective measures as soon as 

large imbalances occur [26]. 

2.1.2. Classical Economic Dispatch 

  

In an optimization problem, the objective is to optimize (minimize or maximize) some 

function f. This function is called the Objective function. For the case of economic dispatch, 

the aim is to minimize the total generation cost, CT, defined as 

𝐶𝑡𝑜𝑡𝑎𝑙 =  𝐶𝑖(𝑃𝐺𝑖)
𝑁
𝑖=1            𝑖 = 1,… ,𝑁     2.01 

 

Where 

𝑃𝐺𝑖  =the active power generation of generation unit i 

N = the number of generation units 

𝐶𝑖(𝑃𝐺𝑖) = Generation cost of unit i 

 

𝐶𝑖(𝑃𝐺𝑖) = is defined as 

 

𝐶𝑖(𝑃𝐺𝑖) = 𝛾𝑖𝑃𝐺𝑖
2 + 𝛽𝑖𝑃𝐺𝑖 + 𝛼𝑖        2.02 

 

Where𝛾𝑖 , 𝛽𝑖  and𝛼𝑖  are the cost coefficients of the i
th

 generator. Eq2.02 therefore becomes:- 

  

𝐶𝑡𝑜𝑡𝑎𝑙 =  𝐶𝑖(𝑃𝐺𝑖)
𝑛
𝑖=1 =  𝛾𝑖𝑃𝐺𝑖

2 + 𝛽𝑖𝑃𝐺𝑖 + 𝛼𝑖
𝑛
𝑖=1      2.03 
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In most optimization problems the objective function f depends on several variables 

𝑥1, . . . . , 𝑥𝑛 . These are called control variables because we can ―control them‖, that is, choose 

the values. For example, the total generation cost may depend on the fuel cost or marginal 

cost of operating each generation unit. Therefore classical economic dispatch involves 

finding the optimal values of these control variables𝑥1, . . . . , 𝑥𝑛 . 

 In many problems the choice of values of 𝑥1, . . . . , 𝑥𝑛  is not entirely free but is subject to 

some constraints, that is, additional restrictions arising from the nature of the problem and the 

variables. Two types of constraints are observed as follows:- 

1. Power balance constraint - where the total power generation must cover the total 

power demand and the power loss. This is implied as below:- 

 

 𝑃𝐺𝑖 = 𝑃𝐷
𝑁
𝑖=1          2.05 (Neglecting losses) 

 

 𝑃𝐺𝑖 = (𝑃𝐷 + 𝑃𝐿)𝑁
𝑖=1         2.06 (Including losses) 

 

Where 

 𝑃𝐺𝑖
𝑁
𝑖=1  = is the total system generation of the network. 

𝑃𝐷  = is the total system demand of the network. 

𝑃𝐿  = is the system transmission losses, which is a function of the generation of each unit and 

system parameters related to the network model. 

2. Generation capacity constraint/generating unit limits 

The power output of any generator should not exceed its rating nor should it be lower than 

the minimum value necessary for stable boiler operation. Thus, the generations are restricted 

to lie within given minimum and maximum limits 

PGi−min  ≤  PGi  ≤ PGi−max  for i = 1,… , N     2.07 

 (Eq.2.05 – 2.06) refers to the balance of total generation with the total demand (PD) and 

(2.07) refers to satisfying the generation level of each unit to be within its respective 

minimum and maximum limits [4]. 

The problem formulated above is a classical economic dispatch problem. The objective is to 

minimize total fuel cost that supplies the load demand subject to satisfying the power balance 

and generation units’ capacity constraints on the system. 
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2.1.3. Security Constrained Economic Dispatch (SCED)  

 

Security constrained economic dispatch incorporate the network security constraints to the 

classical economic dispatch problem. There are two constraints, 

a) Equality constraints 

b) Inequality constraints 

 

2.1.3.1. Equality Constraints 

 

The equality constraints of the SCED reflect the physics of the power system. The physics of 

the power system are enforced through the power flow equations which require that the net 

injection of the real at each bus to be zero as shown in Eq. 2.01. 

1. Real Power Constraints 

 

𝑃𝐺𝐾 −  𝑃𝐷𝐾 =  𝑉𝑘  [𝑉𝑗 [𝐺𝑘𝑗 cos 𝛿𝑘 − 𝛿𝑗  + 𝐵𝑘𝑗 sin 𝛿𝑘 − 𝛿𝑗  
𝑁
𝑖=1 ]]  2.08 

where: 𝑘 = 1,2, . . . , 𝑛; 𝑃𝑔𝑘,  active power generated at bus k; 𝑃𝑑𝑘, : active power demand at 

bus k; 𝑉𝑘, 𝛿𝑘: bus voltage magnitude and angle at bus k; 

𝐺𝑘𝑗,𝐵𝑘𝑗: conductance and susceptance of the (k,j) element in the admittance matrix [27]. 

2.1.3.2. Inequality Constraints 

 

The inequality constraints of the SCED reflect the limits on physical devices in the power 

system as well as the limits created to ensure system security [4]. 

The inequality constraints to be included are as follows. 

1. Generation capacity constraints: 

Active power generation constraints for all units have been incorporated for stable operation. 

This means that the active power output of each generator in any network is restricted by 

lower and upper limits as follows [27]. 

 

Pgi−min  ≤  Pgi  ≤ Pgi−max  for i = 1: NG      2.09 

 

Where, 

𝑃𝑔𝑖  = Unit MW generated by ith generator 
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𝑃𝑔𝑖 − 𝑚𝑎𝑥  = Specified maximum MW generation by i
th

 generator 

𝑃𝑔𝑖 − 𝑚𝑖𝑛 = Specified minimum MW generation by i
th

 generator 

 

2. Line Thermal Limit Constraints for all Transmission Lines 

The power flow over a transmission line must not exceed the specified maximum limit 

because of the stability consideration. 

 

𝑃𝑙𝑖−𝑚𝑖𝑛 ≤ 𝑃𝑙𝑖 ≤  𝑃𝑙𝑖−𝑚𝑎𝑥   𝑓𝑜𝑟 𝑖 = 1,… ,𝑛1       2.010 

Where, 

𝑃𝑙𝑖  : The real power flow at line i 

𝑃𝑙𝑖−𝑚𝑎𝑥  : The maximum real power flow at line i 

𝑛𝑙  : Number of transmission lines in a system 

2.2. LITERATURE REVIEW ON OUT-OF-KILTER ALGORITHM 

 

The out-of-kilter algorithm is a Network Flow Programming algorithm that was invented by 

Ford and Fulkerson [1962]. An improved formulation of Fulkerson's out-of-kilter algorithm 

which leads to more efficient computer implementation was developed by R.S. Barr, F. 

Glover, and D. Klingman. This method is modelled from flows in networks. 

The common elements of a network are a collection of points called nodes, and a collection 

of arcs which cannot these nodes. The nodes are denoted by a single lower case letter i and 

arcs are denoted by naming the nodes they connect e.g. 𝑎𝑟𝑐(𝑖, 𝑗). Some homogenous 

commodity, electrical power for our case, can flow over the arcs, and this is denoted by 𝑓𝑖𝑗, 

the amount of commodity flowing on the arc 𝑖, 𝑗  from the node i to the node j. If 𝑓𝑖𝑗 > 0 

then the commodity flows from node j to node i [28]. 

Arcs have cost and capacity characteristics. Generally, some cost is incurred in moving a unit 

of the commodity from node i to node j, and this cost is denoted as 𝐶𝑖𝑗. This is $/𝑀𝑊 in the 

case of electrical power. The flow is also frequently limited by upper bounds or capacities in 

the arcs, these maximum arc capacities are denoted as 𝑈𝑖𝑗. There may also be a requirement 

for minimum amount of flow along any arc. This is denoted as 𝐿𝑖𝑗. We further assume all 

costs, flows and bounds are integers. The assumption of integral-valued parameters is used to 

demonstrate convergence of the out-of-kilter algorithm. 
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We associate with each node i, a variable πi, which is considered as the price of a unit of the 

flow commodity at the nodes. The πi will be related to the amount demanded at some nodes, 

since as the amount demanded increases, the overall difficulty in supplying it will increase. 

The net cost or relative cost, Ĉij = Cij - πi +πj. The new cost Ĉij represents the total cost to the 

system of transporting one unit of flow from node i to node j. This definition compares the 

cost of retaining a unit at node i with the cost of moving it to node j. In moving a unit of flow 

from node i to node j, the commodity price at i, πi, is foregone and an actual transportation 

cost is incurred. If the sum of these costs is greater than the commodity price at j, πj, then it 

does not pay to ship a unit from i to j. Ĉij will be positive. On the other hand, if a unit at j 

costs than at i plus the transportation cost, Ĉij will be negative and the system benefits from 

the move, and hence the shipment from node i to node j is profitable. If the value at j, πj is 

balanced exactly by the value at i plus the transportation cost, (πi + Cij), then Ĉij = 0, and we 

are indifferent to an additional unit from node i to node j [28]. 

2.2.1. The Out-of-Kilter Algorithm  

 

OKA algorithm transforms the original network into an out of Kilter network by introducing 

a ―return arc‖ from sink node t to source node s while the internal flow retrains unchanged 

(i.e. from source nodes to sink node t). The return arc flow fts equals the original network 

flow r. The OKA network model, with n nodes and m arcs can be shown as below; 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Sample out-of-kilter flow network 

 

Figure 1. 2: Sample out-of-kilter flow network 
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The general network problem requires that we find flows, fii, that minimize total cost (Eq. 

2.1) while at the same time satisfying the constraining conditions (Eq. 2.3) and show that in a 

circulation what goes into a node must come out of the total. 

Minimize 

𝑐 =  𝑐𝑖𝑗 𝑓𝑖𝑗𝑖𝑗  ij ∈ 𝑚        (2.1)   

ij is an element of set m (total number of arcs in network) 

Such that 

  𝑓𝑖𝑗 − 𝑓𝑗𝑖  = 𝑟𝑖𝑗𝑗 ∈𝑛  i ∈ 𝑛.        (2.2)  

𝐿𝑖𝑗  ≤  𝑓𝑖𝑗 ≤ 𝑢𝑖𝑗   i𝑗 ∈ 𝑚       (2.3)  

Where: cij = arc cost per unit 

 fij= flow on arc ij in the network 

 Lij= lower bound of the flow on the arc ij in the network 

 Uij= the upper bound of flow on arc ij in the network 

 n = total number of nodes in the network 

 m = total number of arcs in the network 

The first constraint states that, the total outflow of a node minus the total inflow of the node 

must be equal to the flow balance (supply/demand value) of this node. This is known as the 

flow balance constraints. Next, the flow bound constraints model the physical capacities or 

constraints imposed on the flow’s range. This optimization model describes the typical 

relationships between generators and load demands [3].  

According to the Dual Theory, the corresponding primary problem and dual problem can be 

expressed as below: 

Primary problem 

Max F’=− 𝑐𝑖𝑗𝑖𝑗 𝑓𝑖𝑗        (2.5) 

Such that: 
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  𝑓𝑖𝑗 − 𝑓𝑗𝑖  = 0𝑗 ∈𝑛        (2.6) 

𝐿𝑖𝑗  ≤  𝑓𝑖𝑗 ≤ 𝑢𝑖𝑗   i∈ 𝑛, j = n, i𝑗 ∈ (𝑚 + 𝑠𝑠 + 𝑡𝑡 + 1) (2.7) 

Dual problem 

Min 

G=  𝑈𝑖𝑗𝛼𝑖𝑗𝑖𝑗   −  𝐿𝑖𝑗𝛽𝑖𝑗       (2.8) 

 Such that 

𝑐𝑖𝑗 + 𝜋𝑖 − 𝜋𝑗 + 𝛼𝑖𝑗 − 𝛽𝑖𝑗 ≥ 0      (2.9) 

𝛼𝑖𝑗 ≥ 0,𝛽𝑖𝑗 ≥ 0, 𝑖𝜖𝑛, 𝑗𝜖𝑛, 𝑖𝑗𝜖(𝑚 + 𝑠𝑠 + 𝑡𝑡 + 1)   (2.10) 

π= dual variable of variable f of primary problem 

α & β = dual variables of upper and lower limits Lij, Uij of primary problem.  

If f,n,α,β meet constraints, then  

𝐺 − 𝐹′ =   𝑈𝑖𝑗𝛼𝑖𝑗𝑖𝑗 −  𝐿𝑖𝑗𝛽𝑖𝑗𝑖𝑗 +  𝐶𝑖𝑗 𝑓𝑖𝑗𝑖𝑗       (2.11) 

 =0 𝜋𝑠 − 𝜋𝑡 +  𝑈𝑖𝑗𝛼𝑖𝑗𝑖𝑗 −  𝐿𝑖𝑗𝛽𝑖𝑗𝑖𝑗 +  𝐶𝑖𝑗𝑓𝑖𝑗𝑖𝑗     (2.12) 

 =  𝜋𝑖 𝑓𝑖𝑗 − 𝑓𝑗𝑖  +𝑖𝑗  𝑈𝑖𝑗𝛼𝑖𝑗𝑖𝑗 −  𝐿𝑖𝑗𝛽𝑖𝑗𝑖𝑗 +  𝐶𝑖𝑗𝑓𝑖𝑗𝑖𝑗   (2.13) 

 = [𝜋𝑖 − 𝜋𝑗 + 𝛼𝑖𝑗 − 𝛽𝑖𝑗 + 𝐶𝑖𝑗 ]𝑓𝑖𝑗 +  (𝑈𝑖𝑗 − 𝑓𝑖𝑗𝑖𝑗 )𝛼𝑖𝑗 +  (𝑓𝑖𝑗 − 𝐿𝑖𝑗 )𝛽𝑖𝑗  ≥ 0𝑖𝑗   (2.14) 

𝐺 − 𝐹′ = 0 If the solution is optimal 

Therefore from (2.14) 

 𝜋𝑠 − 𝜋𝑡 + 𝛼𝑖𝑗 − 𝛽𝑖𝑗 + 𝐶𝑖𝑗  𝑓𝑖𝑗 = 0  (2.15) 

 𝑈𝑖𝑗 − 𝑓𝑖𝑗  𝛼𝑖𝑗 = 0  (2.16) 

(𝑓𝑖𝑗 − 𝐿𝑖𝑗 )𝛽𝑖𝑗  = 0   (2.17) 

From Eq.1.4 

 Ĉ𝑖𝑗 + 𝛼𝑖𝑗 − 𝛽𝑖𝑗  𝑓𝑖𝑗 = 0  (2.18) 
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With Ĉ𝑖𝑗 = 𝐶𝑖𝑗 + (𝜋𝑠 − 𝜋𝑡) (2.19) 

Where Ĉ𝑖𝑗 represents the marginal cost or updated cost associated with arc(𝑖, 𝑗) and π is the 

node ―potential‖ or multipliers [3]. 

From (2.15) - (2.19), we get the three in-kilter cases : 

Case 1: 𝐶𝑖𝑗 >  0 

If 𝛽𝑖𝑗 = Ĉ𝑖𝑗 + 𝛼𝑖𝑗, 𝑓𝑖𝑗 ≠ 0 

Furthermore,𝑖𝑓 𝛼𝑖𝑗 ≥  0, 𝛽𝑖𝑗 ≠ 0 then from (2.17) we can get 

𝑓𝑖𝑗 = 𝐿𝑖𝑗 

 

Case 2: 𝐶𝑖𝑗 <  0 

If 𝛽𝑖𝑗 = 𝐶𝑖𝑗 + 𝛼𝑖𝑗 , then 𝑓 𝑖𝑗 ≠  0, and 𝛼 𝑖𝑗 >  𝛽𝑖 𝑗 

Furthermore, if𝛽𝑖𝑗 ≥  0,𝛼 𝑖𝑗 ≠  0 then from (2.16) we can get 

𝑓𝑖𝑗 = 𝑈𝑖𝑗 

Case 3: 𝐶𝑖𝑗 =  0 

From (1.7), we get ( 𝛼 𝑖𝑗 −  𝛽 𝑖𝑗 ) 𝑓 𝑖𝑗 =  0, which can be analyzed as follows: 

 

(3a) If 𝑓 𝑖𝑗 =  0, then ( 𝛼 𝑖𝑗 −  𝛽 𝑖𝑗 )  ≠  0 

When 𝛼 𝑖𝑗 >  𝛽 𝑖𝑗 , then 𝛼 𝑖𝑗 >  0, in this way, we get the following expression from (2.16): 

𝑓𝑖𝑗 = 𝑈𝑖𝑗 ≠ 0 

When 𝛽 𝑖𝑗 >  𝛼 𝑖𝑗 , then 𝛽 𝑖𝑗 >  0, in this way, we get the following expression from (2.17): 

𝑓𝑖𝑗 = 𝐿𝑖𝑗 ≠ 0 

Both situations are conflicted with the assumption 𝑓 𝑖𝑗 =  0. So we can be sure 𝑓 𝑖𝑗 ≠  0 for 

this case. 

(3b) Assuming 𝛼 𝑖𝑗 =  0, then 𝛽 𝑖𝑗 𝑓 𝑖𝑗 =  0 

Since 𝑓 𝑖𝑗 ≠  0 from (3a), we have 𝛽 𝑖𝑗 =  0 

Therefore, from (2.16) we get 

𝑓𝑖𝑗 ≤ 𝑈𝑖𝑗 

From (2.17) we get 

𝑓𝑖𝑗 ≥ 𝐿𝑖𝑗 
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That is, if 𝐶𝑖𝑗 =  0, then 

 𝐿 𝑖𝑗 ≤  𝑓 𝑖𝑗 ≤  𝑈 𝑖𝑗 

Complementary Slackness Condition for Optimality of Out-of-Kilter Algorithm  

Limitations on the permissible flow levels together with permissible levels of system cost 

yield the following conditions that will be satisfied by an optimal solution to the minimum 

cost flow problem [3]. 

1. If Ĉ𝑖𝑗 < 0              𝑓𝑖𝑗 =  𝑈𝑖𝑗       (2.20) 

2. If Ĉ𝑖𝑗 = 0     𝐿𝑖𝑗  ≤ 𝑓𝑖𝑗 ≤  𝑈𝑖𝑗       (2.21) 

3. If Ĉ𝑖𝑗 > 0          𝑓𝑖𝑗 =  𝐿𝑖𝑗                (2.22) 

Table 2.1: States of OKA arcs 
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The complementary slackness conditions for optimality of OKA shown in equations (2.20) – 

(2.22) correspond to the three ―in - kilter‖ states of the arcs. In addition, there are six ―out - of 

- kilter‖ states that do not satisfy conditions (2.20) - (2.22) as shown in Table 1.0.  

 

The states of arcs can be explained with Figure 1.0. 

 

 

 

Figure 2.2: States of OKA arcs 

 

In Figure 1.0, if the arc is in the in - kilter state, the point ( 𝑓 𝑖𝑗 ,𝐶𝑖𝑗 ) will be located on one 

of three dark lines 𝐼1 , 𝐼2 ,𝑎𝑛𝑑 𝐼3 , where the dark line 𝐼1 corresponds to the lower bound 𝐿 𝑖𝑗 

of flow 𝑓 𝑖𝑗 ; the dark line 𝐼3 corresponds to the upper bound 𝑈 𝑖𝑗 of flow 𝑓 𝑖𝑗 ; and the dark 

line 𝐼2 corresponds to the flow 𝑓 𝑖𝑗 that is within 𝐿 𝑖𝑗 <  𝑓 𝑖𝑗 <  𝑈 𝑖𝑗 . If the flow of the arc is 

violated at the upper or lower limits, the point ( 𝑓 𝑖𝑗 ,𝐶𝑖𝑗 ) will be located out of three dark 

lines, which correspond to six ―out - of - kilter‖ states in Figure 1.0. In these situations, the 

value of flow of the arc will be either less than it’s lower limit or higher than its upper limit, 

that is,𝑓 𝑖𝑗 >  𝑈 𝑖𝑗 𝑜𝑟 𝑓 𝑖𝑗 <  𝐿 𝑖𝑗 . 
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From the figure 1.0,   at II1, II2   𝑓𝑖𝑗  <  𝐿𝑖𝑗  

At  III2, III3 𝑓𝑖𝑗  <  𝑈𝑖𝑗  

At  III1  𝑓𝑖𝑗  >  𝐿𝑖𝑗  

At II2   𝑓𝑖𝑗  <  𝑈𝑖𝑗  

If all the arcs are in kilter, then the optimal solution is obtained. Otherwise, we must vary the 

relevant arc flows or node potentials (parameter 𝜋 ) by the labelling technique so that the out 

- of - kilter states of the arcs come into kilter [3]. 

Labelling Rules and Algorithm of OKA  

The out-of-kilter algorithm defines certain "kilter" conditions which; taken together, 

constitute primal and dual feasibility criteria for arcs in a network. The method brings each 

non-conforming ("out-of-kilter") arc into kilter by adjusting its flow or changing its node 

potentials. In order to accomplish this, a labelling procedure is used which, after one or more 

applications, identifies a loop containing the non-conforming arc. 

In order to change the flow of an out-of-kilter arc (𝑠, 𝑡), a suitable path (called a flow 

augmenting path) must be found from node t to node s and flow adjusted on each arc of the 

path by an equal amount, thus maintaining node conservation. This path is found (or its 

nonexistence determined) by alternating use of a labelling procedure and a potential change 

procedure [29]. 

According to labelling technique, the labelling rules of OKA for the forward arc and 

backward arc under nine OKA states shown in Table 1.0 above are listed in Table 1.1, where 

symbol “ ↑  ” stands for increase, “ ↓  ” stands for reduce, “ →  ” stands for change, and “ 𝑓𝑘  ” 

indicates that the flow is outside of the feasible region [25]. 
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Table 2.2: Labelling Rules of OKA algorithms 

 

 

According to the labelling rules, the out-of-kilter algorithm is implemented as follows. 

With incremental flow Loop  

When there exists an incremental flow loop, correct the values of flow for all arcs in the loop. 

The process is as below: 

(1) For forward arcs 

(A) If Ĉ𝑖𝑗 >  0,  𝑖𝑗 <  𝐿 𝑖𝑗 , the node j is able to be labelled. The incremental flow to the node 

j will be computed as 

 

𝑞𝑗 = 𝑚𝑖𝑛[𝑞𝑖 , 𝐿𝑖𝑗 − 𝑓𝑖𝑗]     (2.23) 

 

(b) IfĈ𝑖𝑗 ≤ 0 , 𝑓 𝑖𝑗 < 𝑈 𝑖𝑗 the node j is able to be labelled. The incremental flow to the node j 

will be computed as 

𝑞𝑗 = min[𝑞𝑖 ,𝑈𝑖𝑗 − 𝑓𝑖𝑗]     (2.24) 
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(2) For backward arcs 

(A) IfĈ𝑗𝑖 ≥ 0, > 𝐿 𝑗𝑖 , the node j is able to be labelled. The incremental flow to the node j 

will be computed as 

 

𝑞𝑗 = min[𝑞𝑖 , 𝑓𝑗𝑖 − 𝐿𝑗𝑖]     (2.25) 

 

(b) If Ĉ𝑗𝑖 < 0, 𝑓 𝑗𝑖 > 𝑈 𝑗𝑖, the node j is able to be labelled. The incremental flow to the node j 

will be computed as 

 

𝑞𝑗 = min[𝑞𝑖 , 𝑓𝑗𝑖 − 𝑈𝑗𝑖]     (2.26) 

 

The label eligible conditions are summarised in the Table 2.0 below;  

Table 2.3 Label eligible conditions 

 

Without Incremental Flow Loop  

When there does not exist an incremental flow loop, correct the values of the relative 

cost Ĉ𝑖𝑗 , or Ĉ𝑗𝑖 by increasing the cost of the vertex 𝜋 . This is because the change of  Ĉ𝑖𝑗, 

or Ĉ𝑗𝑖 causes the change of the path of minimum cost flow. Consequently, a new incremental 

flow loop will be produced. The process of computing the incremental vertex cost is as 

below. 

Let B and Ɓ stand for the set of the labelled vertexes and unlabelled vertexes, respectively. 

Obviously, the super source 𝑠 ∈  𝐵 , and super sink  𝑡 ∈ Ɓ. In addition, define two sets of 

arcs A1 and A2 [28]: 

 

𝐴1 = {𝑖𝑗, 𝑖 ∈ 𝐵, 𝑗 ∈ Ɓ,Ĉ𝑖𝑗 > 0,𝑓𝑖𝑗 ≤ 𝑈𝑖𝑗}     (2.27) 

𝐴2 = {𝑗𝑖, 𝑖 ∈ 𝐵, 𝑗 ∈ Ɓ,Ĉ𝑗𝑖 < 0,𝑓𝑗𝑖 ≥ 𝐿𝑖𝑗}     (2.28) 
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The incremental vertex cost is determined as below 

 

 𝛿 =  𝑚𝑖𝑛{𝛿1, 𝛿2}        (2.29) 

 Where 

𝛿1 =  𝑚𝑖𝑛{ Ĉ𝑖𝑗 } >  0       (2.30) 

𝛿2 =  𝑚𝑖𝑛{ Ĉ𝑗𝑖 } >  0       (2.31) 

 

If A1 is an empty set, make 1 =  ∞ ; if A2 is an empty set, make  2 =  ∞ . When 𝛿 =  ∞ , it 

means there is no feasible flow, which is no solution for the given NFP problem. When 𝛿 <

 ∞ , update the vertex costs for all unlabelled vertexes, that is [28], 

 

𝛿′ = 𝜋𝑗 + 𝛿 𝑗 ∈ Ɓ       (2.32) 

 

The main features of the out-of-kilter algorithm are:- 

1. None zero lower bound of flow may be feasible. 

2. The initial flow does not have to be feasible or zero flow. 

3. Non-negative constraints 𝑓𝑖𝑗 > 0are released. 

4. It is easy to imitate a change in network topology by changing bound values of flows 

as the branch outages occurs [3]. 

2.2.1. The improved out-of-kilter Algorithm 

 

In our reformulation all of the above processes are redesigned and the network representation 

is altered to allow more efficient processing. Nevertheless, the basic logic of the original 

method is maintained. The reformulation modifies the labelling procedure in a manner which 

causes it to process less information on the forward pass and more information on the reverse 

pass. Net computational savings result because the reverse pass typically involves only a 

portion of the nodes encountered on the forward pass, and sometimes the reverse pass is not 

executed at all [25]. 

In addition to the new labelling scheme, the reformulated algorithm employs a special 

classification scheme for determining the "kilter status" of each arc. This scheme permits the 

current net capacity and marginal cost of the arc to be evaluated with increased efficiency, 

which in turn expedites the determination of both the flow augmenting path, when it exists, 
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and of the new marginal cost assignment (via implicitly modified "node potentials") when the 

flow augmenting path does not exist or is blocked. 

Basic to both of these schemes is a simple change in arc representation which reclassifies 

each arc into an "original" arc and a "mirror," at an almost negligible increase in computer 

memory requirements. The reclassification, which is only symbolic and does not introduce 

any structural change in the network, causes each arc to become capacitated only from above, 

rather than from both below and above. Special relationships between the capacities, flows 

and marginal prices of an arc and its mirror are maintained by which the "mirror of the 

mirror" is identified as the original. 

The effect of this scheme is to reduce markedly the number of mathematical conditions which 

characterize the "kilter states" applicable to the arcs. The kilter states, which identify the 

degree to which the current arc flow conforms to or deviates from optimality, require 

repetitive monitoring in the out-of-kilter method. Thus the ability of the "mirror arc" 

representation to contract the range of conditions by which these states are recognized leads 

to a convenient streamlining of the solution process. 

Label-eligible nodes are also recognized with improved efficiency by the reformulation, 

utilizing a "partitioned successor" technique. After an initialization stage, the partitioned 

successor technique enables label eligibility to be ascertained with only a portion of the 

customary effort. 

The reformulation of the network proceeds quite simply as follows. Each arc (𝑖, 𝑗) of the 

original network N is split into two interdependent pseudo-arcs. The first pseudo-arc is 

directed from node i to node j and has the same cost 𝑐 𝑖𝑗 and upper bound 𝐾𝑖𝑗 as the original 

arc (𝑖, 𝑗), but no lower bound. The other pseudo-arc is directed from node j to node i with its 

cost equal to the negative of the cost 𝑐𝑖𝑗, and its upper bound equal to the negative of the 

lower bound 𝐿𝑖𝑗 of the original arc. This pseudo-arc, like the first, has no lower bound. The 

flows on the two pseudo-arcs are respectively equal to the flow of the original arc 𝑥𝑖𝑗 and the 

negative of this flow [25]. If we denote the flow variables of the pseudo-arcs by 𝑥𝑖𝑗
′  and 𝑥𝑖𝑗

" , 

respectively, we thus have 

 

𝑥𝑖𝑗
′ =   𝑥𝑖𝑗                                                                                                         (2.33) 

And 

𝑥𝑖𝑗
" =  − 𝑥𝑖𝑗            (2.34) 
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This further implies 

 𝑥𝑖𝑗  = 
1

2
(𝑥𝑖𝑗

′ −  𝑥𝑖𝑗
" )         (2.35)            

 Replacing Xij In the objective function (1) and the node conservation we obtain (discarding 

the one-half multiple in the objective function) the equivalent network problem N [25]: 

 

Minimize 

𝐶 =  𝐶𝑖𝑗 (𝑥𝑖𝑗
′ −  𝑥𝑖𝑗

" )    𝑖𝑗 𝜖𝑁𝑖𝑗        (2.37) 

Subject to 

  [(𝑥𝑖𝑗
′ −  𝑥𝑖𝑗

" )−(𝑥𝑖𝑗
′ −  𝑥𝑖𝑗

" )𝑖𝑗 ] = 0     𝑖 = 1,2…𝑚    (2.38) 

𝑥𝑖𝑗
" ≤  − 𝐿𝑖𝑗     𝑖𝑗 𝜖𝑁           (2.39) 

𝑥𝑖𝑗
′ ≤   𝑈𝑖𝑗      𝑖𝑗 𝜖𝑁        (2.40) 

(𝑥𝑖𝑗
′ + 𝑥𝑖𝑗

" ) = 0    𝑖𝑗 𝜖𝑁       (2.41) 

The new network disposes of lower bounds in the original network at the expense of doubling 

the number of arc variables and introducing the extra constraints (2.41). Although this 

appears to be a trade-off in the wrong direction, we will now show how to reverse this 

seeming disadvantage. To begin, observe the following structural properties of this network:  

1. for each arc into a node there exists a "mirror" arc out of the node.  

2. Each arc is only bound from above. This property may be used to define a net capacity for 

each pseudo-arc as follows: 

𝑛𝐶𝑖𝑗
′ = 𝑈𝑖𝑗 − 𝑥𝑖𝑗

′          (2.42) 

𝑛𝐶𝑖𝑗
" = −𝐿𝑖𝑗 − 𝑥𝑖𝑗

"          (2.43) 

That is, net capacity corresponds to the capacity of a pseudo-arc to accept a flow increase 

without exceeding its upper bound. From constraint (12) a change of flow on a pseudo-arc 

induces the negative of this change in the flow on its mirror, and thus correspondingly 

changes the net capacities of these arcs by equal but opposite amounts. 

The marginal cost Ĉ′𝑖𝑗 of the pseudo-arc associated with x'ij is equal to the marginal cost of 

the original arc (ij); namely, Ĉij. On the other hand, the marginal cost Ĉ"𝑖𝑗 of the mirror 

pseudo-arc is equal to -Ĉij. Thus a change in the marginal cost of a pseudo-arc produces an 

equal but opposite change in the marginal cost of its mirror. A foundation for exploiting these 

properties is given by the following scheme for data organization [25]. 

With each main arc associate a unique integer aij which is a number between 1 and n; and 

with its mirror arc, associate the number (aij + n). These integers will be called arc numbers. 
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Also associate with each node i the set Bi of all arc numbers associated with pseudo-arcs 

directed out-of node i. Thus Bi= {b: b = aij if (i,j) 𝜖N or b =(a ij+ n) if (j,i) 𝜖N}. In addition, 

let Ĉ(b), nc(b) and m(b) denote functions whose values correspond to the margin cost, net 

capacity, and mirror arc number, respectively, associated with arc number b; i.e., 

Margin cost, Ĉ 𝑏 =  
𝐶𝑖𝑗
′  𝑖𝑓 𝑏 =  𝑎𝑖𝑗

        𝐶𝑖𝑗
"  𝑖𝑓 𝑏 =  𝑎𝑖𝑗 + 𝑛

      (2.45) 

 

Net capacity, 𝑛𝐶 𝑏 =  
𝑛𝐶𝑖𝑗

′  𝑖𝑓 𝑏 =  𝑎𝑖𝑗

      𝑛𝐶𝑖𝑗
"  𝑖𝑓 𝑏 =  𝑎𝑖𝑗 + 𝑛

      (2.46) 

 

Mirror arc number, 𝑚 𝑏 =  
𝑏 + 𝑛 𝑖𝑓 𝑏 =  𝑎𝑖𝑗

       𝑏 − 𝑛 𝑖𝑓 𝑏 =  𝑎𝑖𝑗 + 𝑛
     (2.47) 

 
Finally, let ϒ(b) denote a function such that for each arc number b, its value is the "to-node" 

index j corresponding to the direction of the pseudo arc; i.e. 

𝛾 𝑏 =  
𝑗 𝑖𝑓 𝑏 =  𝑎𝑖𝑗

 𝑗 𝑖𝑓 𝑏 =  𝑎𝑖𝑗 + 𝑛
         (2.48) 

 

This data organization allows us (1) to associate a unique number with each pseudo-arc in a 

reformulated network, (2) to quickly determine the mirror's arc number, given the main's 

number and vice versa, (3) to identify the set of outward-directed pseudo-arcs for a given 

node, and (4) to determine the marginal cost and net capacity associated with an arc number. 

Ways of restructuring the out-of-kilter method to afford more significant advantages will now 

be considered. 

 

New Labelling Procedure 

 

To provide a point of reference, suppose the label process of the original out-of-kilter 

algorithm is to be applied at node i, which is currently labelled. Let Ĺ denote the set of 

unlabelled nodes. Then, using Ĉ(b), nc(b), m(b), and ϒ(b) as defined above, if arc (i,j)εN 

(implying that the arc number (aij𝜖Bi), the 

λ and µ label eligibility conditions may be stated as: 

λ:  Ĉ(b) > 0, nc(m(b)) < 0, γ(b)εĹ 

µ:  Ĉ(b) > 0, nc(b) < 0, γ(b)εĹ 

Similarly if arc (J,i) εN (implying that the arc number b = (aji + n)εBl, then the ν and ρ label 

eligible conditions may be stated as: 

ν:  Ĉ(b) ≤ 0, nc(b) > 0, γ(b)εĹ 
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ρ:  Ĉ(b) > 0, nc(m(b)) < 0, γ(b)εĹ 

Thus, using the new data structure, the µ and ν conditions become identical (as a consequence 

of the relationship between marginal costs for a pseudo arc and its mirror). Similarly the λ 

and ρ conditions become identical. Thus our restructuring has reduced the label eligibility 

conditions from four to two, and the standard labelling procedure can be simplified to 

examining each arc number in Bi one at a time, checking the new label eligibility states λ and 

µ (=ν , and ρ). However, the calculations can somewhat be improved more than this [25]. 

 

Partitioning 

 

The labelling process can be facilitated by partitioning the set Bi into those arc numbers 

whose associated arcs are label-eligible and those which are not. We denote the set of label 

eligible arc numbers by Pi and the remaining arc numbers by Qi = Bi - Pi.  

Once the sets Pi and Qi of the partition have been identified, the forward tree generation of 

the labelling process is accelerated since checking of net capacity, marginal cost, and 

direction of each arc is eliminated. Further, once the partition is determined it requires 

minimum maintenance. In particular, this maintenance involves checking the arcs in the flow 

augmentation cycle during breakthrough and checking those arcs affected by a change of 

node potentials. Another benefit of the partition is that knowledge of the set Qi shortcuts the 

determination of the sets used to determine node potential changes [25].  

To implement the labelling process, the label for a given node j is simplified to consist only 

of the predecessor arc number b corresponding to pseudo-arc (i,j) across which node j is 

labelled. This change coupled with the partitioning of Bi has the following theoretical and 

computational advantages [25]: 

1. The use of predecessor arc numbers instead of a node index label avoids possible 

ambiguity in the reverse pass when a network contains multiple arcs between a given pair of 

nodes. 

2. By eliminating the αj values in the label, less information is processed on the forward tree 

generation and more information is processed on the reverse pass; however, the flow 

augmentation pass typically involves only a portion of the nodes labelled on the forward pass, 

and sometimes the reverse pass is not executed at all. 

3. Due to the network reformulation the direction of each arc in Pi is out-of-node i; thus, node 

labelling can be carried out quite rapidly using the function y. That is, each arc number b ε Pi 
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is checked to determine whether node y(b) is labelled. If it isn't, y(b) is labelled with b; 

otherwise, the next arc number in Pi is examined. 

A concise statement of the new labelling procedure (for the objective of increasing flow on 

pseudo-arc (s,t) or decreasing flow on pseudo-arc (t,s) is as follows: 

1. Label node t with the arc number of pseudo-arc (s,t). 

2. For any arbitrary labelled node i (i.e., i1, L), label each un labelled node j (where j = y(b), 

bεPi) with b.  

3. If node s is labelled, go to breakthrough. If s cannot be labelled, go to the potential change 

procedure before returning to step 2. 

 

Breakthrough 

 

In determining the flow change α, the new network representation once again contributes to 

decreased computational effort in this case by using net capacity ncij to eliminate a 

subtraction operation and by using marginal costs to distinguish states [25]. 

The exact calculations performed in updating the flows are as follows: 

1. Let C denote the node labels in the flow augmenting path which are in label-eligible state 

µ(ϑ); similarly,, let Cλ denote the node labels, in this path which are in the label-ineligible 

state λ(=ρ). Then 

α=min [min nc(b), min nc(m(b))] 

bεCµ bεCλ 

2. Retrace the flow augmenting path to update the net capacity of each pseudo-arc and its 

mirror by setting: 

nc(b) = nc(b) - α 

nc(m(b)) = nc(m(b)) +α for all bεC, U Cλ 

3. Simultaneously update the sets P4 and, for each node i on the flow augmenting path as 

follow:- 

a) Move the arc number from Qi to Pi for the pseudo-arc (if it exists) whose mirror lies 

in the flow augmenting path, provided the arc's net capacity becomes positive during 
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the flow change and its marginal cost equals zero. (Only such arcs can change from 

label ineligibility to label eligibility.) 

b) Move the arc number from Pi to Qi for the pseudo-arc (if it exists) that lies in the 

flow augmenting path, provided either: 

1. its marginal cost is non-positive and its new net capacity is zero; 

2. Or its marginal cost is positive and its new mirror capacity is zero. 

New Potential Change Procedure 

By keeping a list of the labelled nodes L and using the sets Bi, the membership conditions of 

S1, S2, RI, and R2 can be halved., The arcs contained in S1,S 2, R 1 , and R 2 can then be 

found simply by examining the arcs in the sets Q associated with labelled nodes. To see this, 

note that both nodes of any arc bεPi will be labelled if node i itself is labelled. Thus, attention 

may be restricted to arcs bcQi to find all labelled unlabelled (and unlabelled-labelled) arcs. 

An additional simplification facilitates the determination of arcs in S1 and S2, by means of 

the following observation [25]. 

If iεL and bεQi, then arc b (or its mirror) is in S1 or S 2 if and only if γ(b)εĹ, Ĉ(b) > 0, and 

nc(b)>0. 

To take advantage of this observation in updating the current marginal costs let Si denote the 

set of all arc numbers bεQi such that arc b (or its mirror) is in S1 or S2. Also let Ri denote the 

set of all arc numbers bεQi such that arc b is a labelled-unlabelled arc and bɇSi; i.e. 

R = {b: γ(b)εĹ, bɇSi}. Finally let S = UŜi and R = UȒi, where these unions are taken over the 

index set of labelled nodes. Then we identify the marginal cost increment Ѳ by 

Ѳ = min Ĉ(b) bεS 

(If this calculation cannot be performed because S is empty, the problem has no feasible 

solution.) The new marginal costs may accordingly be found by updating the current 

marginal costs as follows [25]: 

 

Ĉ(b) = Ĉ(b) - Ѳ  bεSUR 

 

Ĉ(m(b)) = Ĉ(b)  bεSUR 

 

Ĉ(b) = Ĉ(b), for all other arc numbers. 

In order to maintain the partition efficiently, arc numbers are checked for movement from set 

Pi to Qi or from Qi to Pat the same time the marginal costs are updated. 
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The checks required are the following: 

1. If bεSi, nc(b) > 0 and the updated marginal cost Ĉ(b) = 0, then arc b has entered v 

state and should be moved from Qj to Pi. 

2. If bεRi, nc(b) = 0, the old marginal cost Ĉ(b) > 0, and the new marginal cost Ĉ(b) < 0, 

then arc m(b) becomes label-ineligible and should be moved from Pi to Qi. 

To minimize effort in the determination of sets S and R where more than one change of 

potential must be effected to bring a given arc in-kilter, the previous sets S and R are purged 

of currently nonconforming arcs and then augmented by appropriate elements of the sets Qi 

(where node i has been labelled since the previous potential change). Specifically, let L' 

denote the set of nodes which have been labelled since the last potential change, and let L 

and Ĺ denote all currently labelled and unlabelled nodes, respectively (i.e., L' ϲ L). Then we 

can define the updated form of sets S and R as follows: 

S' = {(bεS: γ(b) εĹ, Ĉ(b) > 0} U {b: γ(m(b))εL', y(b)εĹ, Ĉ(b) > 0, (2.49) 

R' = {beR: γ(b) εĹ U {bεS: γ(b) εĹ, Ĉ(b) > 0} U [{b: y(m(b))L', γ(b) εĹ} - Ŝ] (2.50) 

Thus S is screened to form subsets of S' and R', R is purged of non-conforming arcs and 

added to R', and the sets Qt for iεL' are scanned to form the remaining elements of S' and R'. 

This "recycling" of the sets S and R further restricts the population from which the new cut 

set is generated and, thus, reduces the effort required to effect multiple potential changes 

[25]. 

The basic steps of the new potential change procedure are: 

1. If a previous potential change has been made for the current breakthrough attempt, 

perform step 3; otherwise go to step 2. 

2. For each labelled node i, inspect Qi and create the sets Ŝi and Ȓi. Let S =UŜi, and R =UȒi 

and go to step 4. 

3. Form new sets S and R as in (2.49) and (2.50). 

4. If S = ø, stop; there is no feasible solution to the problem. Otherwise, let Ѳ = min Ĉ(b). 

bεS 
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5. If bεSUR update the relative costs as follows: 

 c(b) = c(b) - Ѳ 

 c(m(b)) = c(m(b)) + Ѳ 

While simultaneously updating the partition [25] 

New Kilter Conditions 

The six original out-of-kilter conditions may be compacted to the following four states for a 

given pseudo-arc number b: 

Condition      corrective action 

A: nc(b) < 0      decrease flow on b  

E: nc(m(b)) < 0      increase flow on b  

F: nc(b) > 0, Ĉ(b) > 0     increase flow on b  

G: nc(m(b)) > 0, Ĉ(m(b)) < 0    decrease flow on b  

The equivalence of these conditions to the six original out-of-kilter conditions is easily 

established. From the symmetric properties of these conditions, it follows that whenever a 

pseudo-arc is in-kilter then its mirror is also in-kilter. Once a pseudo-arc is in-kilter it will, 

moreover, always remain in-kilter due to the equivalence of the new labelling, breakthrough, 

and potential change procedures to the original procedures. Thus by successively putting the 

"main" pseudo-arcs in-kilter (i.e., those pseudo-arcs corresponding to original arcs), an 

optimal solution can be obtained by examining each of these arcs once. Alternatively, if 

pseudo- arcs are inspected as main-mirror pairs in the state determination process, only states 

A, E, and F need be checked for the main pseudo-arc and only state G need be checked for 

the mirror (i.e., the main pseudo-arc can be considered in-kilter if it violates states A, E, and 

F, whereupon the mirror is immediately put in-kilter via state G) [25]. 
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CHAPTER 3 

SOLUTION OF THE SECURITY CONSTRAINED ECONOMIC 

DISPATCH USING IOKA 

3.1. FORMULATION OF THE SECURITY CONSTRAINED ECONOMIC 

DISPATCH BY IMPROVED OUT-OF-KILTER (IOKA) 

 

For N thermal units, the formulation of the economic dispatch problem is as given below:- 

Min 𝐹 =  𝑎𝑖𝑃𝐺𝑖
2 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖

𝑛
𝑖=𝑁𝐺     (3.1) 

Such that 

 𝑃𝐺𝑖
2

𝑖(𝜔) +  𝑃𝑇𝑗
2

𝑗 (𝜔) +  𝑃𝐷𝑘
2

𝑘(𝜔) = 0    𝜔 ∈ 𝑛  (3.2) 

 

𝑃𝐺𝑖−𝑚𝑖𝑛  ≤  𝑃𝐺𝑖  ≤ 𝑃𝐺𝑖−𝑚𝑎𝑥       (3.3) 

𝑃𝑇𝑖−𝑚𝑖𝑛  ≤  𝑃𝑇𝑖  ≤ 𝑃𝑇𝑖−𝑚𝑎𝑥      (3.4) 

𝑖 ∈ 𝑁𝐺, 𝑗 ∈ 𝑁𝑇,   𝑘 ∈ 𝑁𝐷 

ai, bi, ci are the cost coefficients of the i
th

 generator. 

The IOKA network model of economic power dispatch consists of three types of arcs. These 

are the generation arc, the transmission arc and the load arc. Obviously, each generation arc 

corresponds to a generator, each transmission arc corresponds to a line or transformer, and 

each load arc corresponds to a real power demand. In addition, there is a return arc. 

Comparing economic dispatch shown in (3.0 – 3.4) with IOKA model shown in (2.37) – 

(2.41) the average cost and flow limits of each arc are:- 

1. The generation arc 

𝐶𝑖𝑗 = 𝑎𝑖𝑃𝐺𝑖 + 𝑏𝑖        (3.5) 

𝐿𝑖𝑗 = 𝑃𝐺𝑖         (3.6) 

𝑈𝑖𝑗  = 𝑃𝐺𝑖         (3.7) 

  

2. The transmission arc 

𝐶𝑖𝑗 = 𝑅𝑗𝑃𝑇𝑗        (3.8) 

𝐿𝑖𝑗 = 𝑃𝑇𝑖         (3.9) 
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𝑈𝑖𝑗  = 𝑃𝑇𝑖         (3.10) 

3. The load arc  

𝐶𝑖𝑗 = 0        (3.11) 

𝐿𝑖𝑗 = 𝑃𝐷𝑘         (3.12) 

𝑈𝑖𝑗  = 𝑃𝐷𝑘         (3.13) 

4. The return arc 

𝐶𝑖𝑗 = 0        (3.14) 

𝐿𝑖𝑗 =  𝑃𝐷𝑘𝑘∈𝑁𝐷 +
1

2
 𝑅𝑗𝑃𝑇𝑗

2𝑛
𝑗=𝑁𝑇     (3.15) 

𝑈𝑖𝑗  =  𝑃𝐷𝑘𝑘∈𝑁𝐷 +
1

2
 𝑅𝑗𝑃𝑇𝑗

2𝑛
𝑗=𝑁𝑇     (3.16) 

 

3.2. IOKA ALGORITHM FOR SECURITY CONSTRAINED ECONOMIC 

DISPATCH 

 

The essence of the OKA is to revise the out - of - kilter states of arcs to in - kilter states 

according to complementary slackness conditions for optimality equations (2.20) – (2.22). 

The steps followed in solving the IOKA based SCED problem is as follows [25]. 

1. Set initial values of the flows fij and node potentials πij.  

2. Calculate the kilter status for all arcs. Arbitrarily choose an out of kilter arc. If none 

exists, stop: The current flows and node potential values are optimal. 

3. Apply the labelling procedure for the out of kilter arc. If the arc is either in state L1, 

B1 or K1, set s = i and t = j, otherwise, if arc is in state L2, B2 or K2 set s = j and t = 

i. 

L1:                𝐶𝑖𝑗 > 0             𝑓𝑖𝑗  < 𝐿𝑖𝑗    

L2:                𝐶𝑖𝑗 > 0             𝑓𝑖𝑗  > 𝐿𝑖𝑗    

     B1:                𝐶𝑖𝑗 = 0             𝑓𝐼𝐽 < 𝑈𝐼𝐽        

     B2:                𝐶𝑖𝑗 = 0             𝑓𝐼𝐽 > 𝑈𝐼𝐽        

     K1:                𝐶𝑖𝑗 < 0             𝑓𝐼𝐽 < 𝑈𝐼𝐽        

     K2:                𝐶𝑖𝑗 < 0             𝑓𝐼𝐽 > 𝑈𝐼𝐽        
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Check if S is labelled, if labelled go to step 4. If not labelled, go to step 5. 

4. Find a flow augmenting path from s to t if the selected arc is in states L1, B1, K1, or a 

flow augmenting path from t to s if the selected arc is in states L2, B2 or K2. If such a 

path can be found, augment the flow by the appropriate amount α. Α is the minimum 

of the amount needed to bring arc(s,t) into kilter and the maximum allowable flow 

increase on the flow augmentation path. 

 

α = 𝑚𝑖𝑛[αs  , 𝐿𝑠𝑡 − 𝑓𝑠𝑡 ]  𝑖𝑓  𝑠, 𝑡 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝐿1 𝑜𝑟 𝐵1 

α = min[αs  ,𝑈𝑠𝑡 − 𝑓𝑠𝑡 ]  𝑖𝑓  𝑠, 𝑡 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝐾1 

α = min[αs  ,𝑓𝑠𝑡 − 𝐿𝑠𝑡 ]  𝑖𝑓  𝑠, 𝑡 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝐿2 

α = min 𝛼𝑠 ,𝑓𝑠𝑡 − 𝑈𝑠𝑡    𝑖𝑓  𝑠, 𝑡 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝐾2 𝑜𝑟 𝐵2 

Go to step 2. If no such path exists, go to step 5 to revise the node potentials. 

5. Apply the node potential change procedure. If ϴ = ∞ stop. The problem has no 

feasible solution. If ϴ ≠ ∞ update marginal costs. If arc(s,t) is now in kilter go to step 

2, otherwise go to step 3 and continue labelling procedure using the old labels and the 

current marginal costs. 
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3.3 FLOWCHART FOR THE SOLUTION OF THE SCED PROBLEM USING GA 

 

Figure 3. 1: Flowchart for the solution of the SCED problem using GA 
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CHAPTER 4 

RESULTS AND ANALYSIS 

 

The proposed algorithm was tested on IEEE-30 bus test system. The results were compared 

with those obtained from the Out-of-Kilter algorithm and Conventional Linear Programming 

and also compared with results from the classical economic dispatch neglecting the losses. 

The generator data, generation cost data, load data and line limits for the system are taken 

from [31] while the network topology is taken from [30]. 

4.1. CASE STUDY: IEEE 30 BUS NETWORK 

 

 

Figure 4.1: Single line diagram of the IEEE 30-bus test system 
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Figure 4.2: Representation of the IEEE 30-bus Network as an OKA Network Model in 

MATLAB 
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4.2. RESULTS 

 

The optimal total generation, generation for the six generating units, the optimal generation 

costs and the system power losses using IOKA are shown in tables 4.1, 4.3, 4.4, 4.5 for both 

SCED and ED, for a system demand of 283.4 MW, 380 MW, 460 MW and 540 MW. Table 

4.2 shows the comparison of the proposed IOKA method to those reported using OKA and 

LP from [31], for a total load demand of 283.4 MW. 

Table 4.1: Optimal generation for SCED and Classical ED using IOKA, Demand = 

283.4 MW 

Generation No. SCED ED 

PG1 178.347 175.54 

PG2 49.0073 49.25 

PG5 20.9276 21.63 

PG8 21.9933 22.29 

PG11 11.8439 12.63 

PG13 10.9203 11.48 

Total generation(MW) 293.0395 292.82 

Total cost($/hr) 802.34 802.35 

Total loss(MW) 9.6395 9.42 
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Table 4.2: Comparison of Economic Dispatch by IOKA, OKA and LP, Demand =283.4 

MW 

Generation No. IOKA OKA LP 

PG1 178.347 175.88 176.26 

PG2 49.0073 48.81 48.84 

PG5 20.9276 21.51 21.51 

PG8 21.9933 22.36 22.15 

PG11 11.8439 12.30 12.14 

PG13 10.9203 12.00 12.00 

Total generation(MW) 293.0395 292.86 292.9 

Total cost($/hr) 802.34 802.51 802.4 

Total loss(MW) 9.6395 9.46 9.395 

 

Table 4.3: Optimal generation for SCED and Classical ED using IOKA, Demand = 380 

MW 

Generation No. SCED ED 

PG1 199.6674 199.9781 

PG2 63.7206 65.5647 

PG5 25.3440 26.0815 

PG8 56.8663 53.4134 

PG11 22.9928 21.6505 

PG13 23.8006 25.7982 

Total generation(MW) 392.3917 392.4864 

Total cost($/hr) 1176.31 1176.46 

Total loss(MW) 12.3917 12.4864 
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Table 4.4: Optimal generation for SCED and Classical ED using IOKA, Demand = 460 

MW 

Generation No. SCED ED 

PG1 199.6974 258.8656 

PG2 82.0582 68.8267 

PG5 28.6842 26.9822 

PG8 84.8428 69.6569 

PG11 34.4458 27.9912 

PG13 46.6082 29.1942 

Total generation(MW) 476.3367 481.5167 

Total cost($/hr) 1603.11 1523.96 

Total loss(MW) 16.3367 21.5167 

 

Table 4. 5: Optimal generation for SCED and Classical ED using IOKA, Demand = 540 

MW 

Generation No. SCED ED 

PG1 197.8287 296.7202 

PG2 97.4788 77.3291 

PG5 36.9553 29.8813 

PG8 137.9802 90.8837 

PG11 31.5865 36.0142 

PG13 60.0670 40.1588 

Total generation(MW) 561.8965 570.9874 

Total cost($/hr) 2248.16 1914.45 

Total loss(MW) 21.8965 30.9874 
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4.3. ANALYSIS AND DISCUSSIONS 

 

 

Figure 4.3: Variation of Optimal generation cost with total system demand for SCED 

and ED 

 

Figure 4.4: Variations of Real power loss with total system demand for SCED and ED 
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Figure 4.3 shows the variation of optimal cost with power demand for SCED. The cost of 

generation increases with increase in the load demand. The Figure 4.3 also attests that the 

cost of generation with the security constraint considered (SCED) is higher than the cost of 

generation for the classical ED; this increased cost is due to the cost for ensuring the power 

system security.  

In Figure 4.4, it is vital to observe that the total real power losses obtained with IOKA SCED 

are low as compared to those obtained from IOKA ED. this is more evident at high load 

demands of 400 MW and above and could be attributed to the fact that while performing 

SCED, the line thermal limits are maintained. This leads to reduced system losses compared 

to when the lines are carrying power that violates their permissible line power limits.   

From Table 4.2, it can be seen that IOKA method give better results than other methods in 

terms of the total generation 293.0395 MW as compared to OKA = 292.86 MW and LP = 

292.9 MW. This is also achieved at a slightly reduced total cost of 802.34 $/hr. This could 

account for a measurable saving in fuel cost hence better attainment of our objective function. 

This demonstrates the potential and effectiveness of the proposed method to solve the 

Security Constrained optimization problems. 

In Table 4.2, by comparing the results obtained with IOKA algorithm and those realized by 

OKA and LP as cited in published works [31], the IOKA algorithm was able to achieve close 

to similar results as both methods. 

 

  



55 

 

CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS  

5.1. CONCLUSION 

 

In this project, IOKA algorithm was applied to solve the economic load dispatch problem 

with security constraints. The approach was tested on the IEEE 30-bus 6-generator network.  

The IOKA SCED results were compared with those obtained from published works using 

Linear Programming and the Out-of-Kilter algorithm to validate the effectiveness of the 

proposed algorithm. The main security constraints considered are the generated active power 

as well as the active power flow limits of transmission lines.  

Considering the cases and comparative study presented, IOKA algorithm appears to be very 

efficient in particular for its fast convergence to the global optimum and its slight low optimal 

cost of generation as compared to the LP and OKA method. This method is highly 

appropriate for network flow problems either in power systems or other systems e.g. the 

transportation problem. 

 

5.2. RECOMMENDATIONS 

 

1. This project considered only the cost of generation of power for the system. 

The project could be extended to also cover the cost incurred in 

transmission of the power through the network.  

2. The project could also be broadened to perform N-1 security analysis which caters 

for cases of contingencies such as line outage in addition to the present operating 

condition of the system. 

3. The method could be used to carry out SCED for other IEEE test buses i.e. 14-bus 

and 57-bus, in order to determine the effect of size of the network on the 

algorithm computation time in converging to the optimal solution.   
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APPENDIX 

 

Appendix Table 1: Generator data for IEEE 30-bus system [31] 

Generators #1 #2 #5 #8 #11 #13 

Pgimax(p.u.) 2.00 0.80  0.50 0.35 0.30 0.40 

Pgimin(p.u.) 0.50 0.20 0.15 0.10 0.10 0.12 

Qgimax(p.u.) 2.50 1.00 0.80 0.60 0.50 0.60 

Qgimin(p.u.) -0.20 -0.20 -0.15 -0.15 -0.10 -0.15 

Quadratic cost function       

ai 0.00375 0.0175 0.0625 0.0083 0.0250 0.0250 

bi 2.00000 1.7500 1.0000 3.2500 3.0000 3.0000 

ci 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Appendix Table 2: Load data for IEEE 30-bus system [31] 

Bus no. PD(p.u) QD(p.u) Bus no. PD(p.u) QD(p.u) 

1 0.000 0.000 16 0.035 0.016 

2 0.217 0.127 17 0.090 0.058 

3 0.024 0.012 18 0.032 0.009 

4 0.076 0.016 19 0.095 0.034 

5 0.942 0.190 20 0.022 0.007 

6 0.000 0.000 21 0.175 0.112 

7 0.228 0.109 22 0.000 0.000 

8 0.300 0.300 23 0.032 0.016 

9 0.000 0.000 24 0.087 0.067 

10 0.058 0.020 25 0.000 0.000 

11 0.000 0.000 26 0.035 0.023 

12 0.112 0.075 27 0.000 0.000 

13 0.000 0.000 28 0.000 0.000 

14 0.062 0.016 29 0.024 0.009 

15 0.082 0.025 30 0.106 0.019 
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Appendix Table 3: Line flow limits data for IEEE 30-bus system [31] 

Line 

No. 

From 

Bus 

To 

Bus 

Flow 

limit(MW) 

Annual 

Cost 

(K$/year) 

Line 

No. 

From 

Bus 

To 

Bus 

Flow 

limit(MW) 

Annual 

Cost 

(K$/year) 

1 1 2 130 216.6125 22 15 18 16 80.6000 

2 1 3 130 307.2875 23 18 19 16 235.6000 

3 2 4 65 509.9500 24 19 20 32 186.0000 

4 3 4 130 700.0000 25 10 20 32 117.8000 

5 2 5 130 721.5250 26 10 17 32 167.4000 

6 2 6 65 168.1750 27 10 21 32 160.4250 

7 4 6 90 474.3000 28 10 22 32 195.3000 

8 5 7 70 62.0000 29 21 22 32 166.2375 

9 6 7 130 130.2000 30 15 23 16 100.7500 

10 6 8 32 104.6250 31 22 24 16 40.3000 

11 6 9 65 306.9000 32 23 24 16 65.1000 

12 6 10 32 20.9250 33 24 25 16 210.8000 

13 9 11 65 83.7000 34 25 26 16 204.6000 

14 9 10 65 927.6750 35 25 27 16 83.7000 

15 4 12 65 554.1250 36 28 27 65 223.2000 

16 12 13 65 15.1125 37 27 29 16 160.4250 

17 12 14 32 30.2250 38 27 30 16 90.6750 

18 12 15 32 97.6500 39 29 30 16 216.6125 

19 12 16 32 179.0250 40 8 28 32 54.2500 

20 14 15 16 124.7750 41 6 28 32 210.8000 

21 16 17 16 146.4750      
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PROGRAM LISTING 
% Improved Out-of-Kilter Algorithm solution for SCED 

clear 

clc 

  

%POWER FLOW ANALYSIS (NR) 

nrpflow = runpf('case_ieee30'); 

clc 

branch(41,3) =0; 

power = [nrpflow.branch(:,1) nrpflow.branch(:,2) nrpflow.branch(:,14)]; 

for j =1:2 

for i = 1:41 

branch(i,j) = power(i,j) +1; 

end 

end 

powerflow = [branch(:,1) branch(:,2) power(:,3)]; 

  

%declare required variables 

mpc = case_ieee30b; 

node_potentials(32,32)=0; %node potentials 

min_capacity(32,32)=0; %minimum  line capacities 

max_capacity(32,32)=0;  %maximum line capacities 

line_cost(32,32)=0; %line transmission costs 

initial_flow(32,32)=0; %initial line flows 

  

%set the initial values 

for i = 1:32 

for j = 1:32 

for l = 1:69 

if((i == mpc.branch(l,1)) && ((j == mpc.branch(l,2)))) 

node_potentials(i,j) = 0;  

min_capacity(i,j) = mpc.branch(l,3);  

max_capacity(i,j) = mpc.branch(l,4);   

line_cost(i,j) = mpc.branch(l,5);  

initial_flow(i,j) = mpc.branch(l,6); 

end 

end 

end 

end 

  

%initialise initial flow from power flow by NR 

for i=1:41 

for j=1 

if(initial_flow(powerflow(i,j),powerflow(i,j+1))==1) 

    if(powerflow(i,j+2) > 0) 

    initial_flow(powerflow(i,j),powerflow(i,j+1)) = powerflow(i,j+2); 

    end 

end 

end 

end 

gen = [0 260 40 0 0 20 0 0 23 0 0 67 0 45]; 

    for j=1:14 

initial_flow(1,j) = gen(1,j); 

    end 
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%GENERATOR LIMITS 

pgmax = [200 80 0 0 50 0 0 35 0 0 30 0 40]; 

pgmin = [50 20 0 0 15 0 0 10 0 0 10 0 12]; 

for i = 1:13 

max_capacity(1,i+1) = pgmax(1,i); 

min_capacity(1,i+1) = pgmin(1,i); 

end 

  

%CHANGE LOAD DEMAND 

loaddemand = [0 0 288.3 2.4 7.6 94.2 0 22.8 30 0 5.8 0 11.2 0 6.2 8.2 3.5 9 3.2 9.5 2.2 17.5 0 3.2 8.7 

0 3.5 0 0 2.4 10.6 0]; 

for i = 1:32 

min_capacity(i,32) = loaddemand(1,i);  

max_capacity(i,32) = loaddemand(1,i);  

min_capacity(32,1) = sum(loaddemand);  

max_capacity(32,1) = sum(loaddemand);  

end 

  

    flow = initial_flow; 

    for iteration = 1:200 % maximum number of iterations, Stopping criteria 

        %CALCULATE MARGINAL COST 

        marg_cost = marginal_cost(line_cost,node_potentials); 

         

        %CHECK LINES KILTER STATUS AND LABEL AN OUT OF KILTER LINE 

        [kilter, s, t] = kilter_status(max_capacity,min_capacity,flow,marg_cost); 

     

        %FLOW OPTIMALITY CHECK   

        [~, no_nodes] = size(flow); 

        if (s == 0 && t == 0) %Stopping criteria 

            %If optimal,break to end iteration and calculate total generation and fuel cost at the end  

        break 

        else %If not optimal, find flow augmenting path 

        [path, labelled_nodes] = bfs_augmentingpath(s,t,flow,max_capacity,no_nodes); 

        end 

         

        %FLOW AUGMENTING PATH CHECK 

        pathsize = max(size(path)); 

        if ~isempty(path)%flow augmenting path is present 

        flow = ff_updated_flow(s,t,flow, max_capacity,no_nodes); %calculate new flows 

        else %flow augmenting path is absent 

         

        %INCREMENTAL VERTEX COST CALCULATION 

        [b labellednode_potentials] = calc_theta(marg_cost,node_potentials, flow, 

max_capacity,min_capacity, labelled_nodes);  

            if b ~= inf %feasible incremental vertex cost 

            node_potentials = node_price(node_potentials, labellednode_potentials,b); %change node 

potentials 

            else 

            disp('THE SOLUTION IS INFEASIBLE'); %Stopping criteria, flow is infeasible 

            break 

            end 

        end 

    end 
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   %FUEL COST EVALUATION 

    fcost = generatorfuelcost(flow);  

    fuelcost = strcat('TOTAL GENERATION COSTS =', num2str(fcost), ' $'); 

    %generation of each generator 

    PG1 = strcat('PG1 =',num2str(flow(1,2)),' MW');  

    PG2 = strcat('PG2 =',num2str(flow(1,3)),' MW'); 

    PG5 = strcat('PG5 =',num2str(flow(1,6)),' MW'); 

    PG8 = strcat('PG8 =',num2str(flow(1,9)),' MW'); 

    PG11 = strcat('PG11 =',num2str(flow(1,12)),' MW'); 

    PG13 = strcat('PG13 =',num2str(flow(1,14)),' MW'); 

    %total load demand 

    load_demand = strcat('TOTAL LOAD DEMAND =', num2str(sum(loaddemand)), ' MW'); 

    %total generation 

    tgen = flow(1,2)+flow(1,3)+flow(1,6)+flow(1,9)+flow(1,12)+flow(1,14);  

    tgeneration = strcat('TOTAL POWER GENERATION =', num2str(tgen), ' MW');%concatenation 

    %total real power losses 

    tloss = tgen-flow(32,1);  

    tlosses = strcat('TOTAL POWER LOSSES =', num2str(tloss), ' MW');    

    %dispay results 

    disp(flow); 

    disp('OPTIMAL GENERATION'); 

    disp(load_demand); 

    disp(tgeneration); 

    disp(tlosses); 

    disp(fuelcost);fprintf('\n'); 

    disp(PG1); 

    disp(PG2); 

    disp(PG5); 

    disp(PG8); 

    disp(PG11); 

    disp(PG13); 

 

%MARGINAL COST FUNCTION 

function marg_cost = marginal_cost(line_cost,node_potentials)  

%get the rows and columns matrices 

 [rows1, cols1] = size(line_cost); 

 %calculate marginal cost 

 marg_cost(rows1, cols1) = 0; 

  for i = 1:rows1 

     for j = 1:cols1 

         %check for existence of the line before calculating marginal cost 

         if line_cost(i,j) ==0  

             marg_cost(i,j) = 0; 

         else 

         marg_cost(i,j) = line_cost(i,j) - node_potentials(i,i)+ node_potentials(j,j); 

         end 

     end 

  end 

 end 

 

%CHECK KILTER STATUS FUNCTION 

function [kilter, s, t] = kilter_status(max_capacity,min_capacity,flow,marg_cost)                     

%check kilter status of the lines 

[rows1, cols1] = size(flow); 

kilter(rows1,cols1) = 0;  
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for m = 1:rows1 

   for n = 1:cols1 

    %definition of variables 

      mc = marg_cost(m,n); %set x to represent marginal cost of line 

      f = flow(m,n);  %set y to represent flow on line 

      l = min_capacity(m,n);%set l to represent minimum capacity of line 

      u = max_capacity(m,n);%set U to represent maximum capacity of line  

      if ((mc > 0 && f < l) || (mc > 0 && f > l)) 

          kilter(m,n) = 0; %let 0 represent an out-of-kilter arc 

      elseif ((mc == 0 && f < l) || (mc == 0 && f > u)) 

          kilter(m,n) = 0; %let 0 represent an out-of-kilter arc 

      elseif ((mc < 0 && f < u) || (mc < 0 && f > u)) 

          kilter(m,n) = 0; %let 0 represent an out-of-kilter arc 

          else 

          kilter(m,n) = 1; %let 1 represent an in-kilter arc 

      end 

      if (m == n) 

          kilter(m,n) = 1; %set nodes as in-kilter by default 

      end 

    end 

end  

%label out-of-kilter line 

s = 0; 

t = 0; 

for i = 1:rows1 

    for j = 1:cols1 

        if kilter(i,j) ==0  %check if any line violates its limits(is out-of-kilter), label the out-of-kilter line 

             if i ~= j 

                 s = i;  

                 t = j; 

             else 

                 disp('Error in labelling out-of-kilter line'); 

             end 

         break 

       else  

           %empty statement, ensures the next line is checked 

          end          

     end 

end 

end 

 

%CHECK FLOW AUGMENTING PATH FUNCTION 

function [augmentingpath, labelled_nodes] = bfs_augmentingpath(start,target,initial_flow,capacity,n) 

    WHITE =0; %shows the path has not been traversed 

    GRAY=1; 

    BLACK=2; %shows the path has not been traversed 

    color(1:n)=WHITE; %shows if all the paths in the network have been checked 

    head=1; 

    tail=1; 

    q=[]; 

    augmentingpath=[]; 

    labelled_nodes=[]; 

    %ENQUEUE 

    q=[start q]; 

    color(start)=GRAY; 
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    pred(start) = -1; 

    pred=zeros(1,n); 

    while ~isempty (q)  

    %    [u,q]=dequeue(q); 

            u=q(end); % u controls the rows of the matrices 

            q(end)=[]; 

            color(u)=BLACK; 

    %     dequeue end here    

            for v=1:n % v controls the columns of the matrices 

                if (color(v)==WHITE && capacity(u,v)>initial_flow(u,v) ) %check if the line has been 

treversed and if the flow is less than line capacity enqueue(v,q) 

                    q=[v q]; 

                    color(v)=GRAY; 

    % enqueue end here 

                    pred(v)=u;                          

                end 

            end 

    end 

if color(target)==BLACK %confirm if there is a path from source to sink 

       temp=target; 

       %set the augmenting path from source to sink 

       while pred(temp)~=start  

        augmentingpath = [pred(temp) augmentingpath]; 

        labelled_nodes = [pred(temp) augmentingpath]; 

        temp=pred(temp);  

       end 

       augmentingpath=[start augmentingpath target];  

    else 

        augmentingpath=[]; % set augmenting path to empty if there is no path from source to sink 

    end 

   

%UPDATE FLOW FUNCTION 

function updated_flow =ff_updated_flow(s,t,flow,capacity,no_nodes) %you can remove the output to 

prevent multiple  

%outputs of final value while 'choose_arc' is checking line violations 

updated_flow=0; %initialise updated_flow 

%call function bfs_augmentingpath to look for a flow augmenting value 

augmentingpath = bfs_augmentingpath(s,t,flow,capacity,no_nodes); 

%check if a flow augmenting path has been returned 

while ~isempty(augmentingpath)     

    increment = inf; 

    for i=1:length(augmentingpath)-1 

    %get the flow augmenting value 

        increment=min(increment, capacity(augmentingpath(i),augmentingpath(i+1))-

flow(augmentingpath(i),augmentingpath(i+1))); 

    end 

    %flow exists,increase the flow 

    for i=1:length(augmentingpath)-1 

flow(augmentingpath(i),augmentingpath(i+1))=flow(augmentingpath(i),augmentingpath(i+1))+incre

ment;%increase flow on forward arc   

flow(augmentingpath(i+1),augmentingpath(i))=flow(augmentingpath(i+1),augmentingpath(i))-

increment; %decrease flow on reverse arc 

    end 

    updated_flow =updated_flow+increment; %update the initial flows with the incremented values 

    updated_flow = nflow(s,t,flow,capacity,no_nodes);%recalculate new flow 
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    augmentingpath = bfs_augmentingpath(s,t,flow,capacity,no_nodes); %find new flow augmenting 

path after every update 

end 

 

%INCREMENTAL VERTEX COST FUNCTION 

function [b labellednode_potentials] = calc_theta(marg_cost,node_potentials, flow, 

max_capacity,min_capacity, labelled_nodes) 

[rows1, cols1] = size(node_potentials); 

S1 = []; 

S2 = []; 

labellednode_potentials(rows1, cols1) = 0; 

[rows2, cols2] = size(labelled_nodes); 

%store the node potentials of the labelled nodes 

while cols2 ~= rows2 

    ro = labelled_nodes(1,cols2); 

    kol = labelled_nodes(1,cols2); 

        labellednode_potentials(ro,kol) = node_potentials(ro,kol); 

        cols2 = cols2-1; 

end 

%create two sets S1 and S2 

for i = 1:rows1 

   for j = 1:cols1 

        if (marg_cost(i,j) > 0 && flow(i,j) <= max_capacity(i,j))  %vector A1 

       S1(i,j) = marg_cost(i,j); 

       elseif(marg_cost(i,j) < 0 && flow(i,j) >= min_capacity(i,j)) 

       S2(i,j) = marg_cost(i,j); 

     else 

    end   

   end 

%get the incremental vertex cost 

if isempty(S1) 

    b1 = inf; 

else 

   b1 = min(S1(S1>0)); 

end 

if isempty(S2) 

    b2 = inf; 

else 

   b2 = min(S2(S2>0)); 

end 

theta = min(min(b1, b2)); 

b(1:rows1,1:cols1) = theta;  

end 

 

%UPDATE NODE PRICE FUNCTION 

function node_potentials = node_price(node_potentials, labellednode_potentials,b) 

[rows1, cols1] = size(node_potentials); 

%calculate the new node potentials of all the nodes 

for i = 1:rows1 

        for j = 1:cols1 

        node_potentials(i,j) = node_potentials(i,j) + b(i,j); 

        end  

end 

 %keep the node potentials of the labelled nodes unchanged 

for i = 1:rows1 
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    for j = 1:cols1 

        if labellednode_potentials(i,j) ~= 0 

        node_potentials(i,j) = labellednode_potentials(i,j); 

        end  

    end 

end 

 end 

   

%COST EVALUATION FUNCTION 

function fuelcost = generatorfuelcost(flow)  

fuelcost = 0; %initialize fuel cost variable 

%set generator power outputs from optimal solution 

if size(flow)==32 

    P = [flow(1,2) flow(1,3) flow(1,6) flow(1,9) flow(1,12) flow(1,14)]; 

elseif size(flow)==16 

    P = [flow(1,2) flow(1,3) flow(1,4)]; 

end  

%IEEE 30 bus generator cost coefficients 

% a      b       c 

abc = [ 

0.00375 2.0000 0.000 

0.01750 1.7500 0.000 

0.06250 1.0000 0.000 

0.00830 3.2500 0.000 

0.02500 3.0000 0.000 

0.02500 3.0000 0.000 

];  

%CALCULATE FUEL COST  

[~,n] = size(P); 

   for i = 1:n 

    fuelcost=fuelcost +(abc(i,1)*P(1,i)*P(1,i)+abc(i,2)*P(1,i)+abc(i,3)); 

    end 

  end 

 


